Nicholson K L, Munson M, Miller R B, Filip T J, Fairman R, Hughson F M
Department of Chemistry, Princeton University, New Jersey 08544, USA.
Nat Struct Biol. 1998 Sep;5(9):793-802. doi: 10.1038/1834.
The fusion of intracellular transport vesicles with their target membranes requires the assembly of SNARE proteins anchored in the apposed membranes. Here we use recombinant cytoplasmic domains of the yeast SNAREs involved in Golgi to plasma membrane trafficking to examine this assembly process in vitro. Binary complexes form between the target membrane SNAREs Sso1p and Sec9p; these binary complexes can subsequently bind to the vesicle SNARE Snc2p to form ternary complexes. Binary and ternary complex assembly are accompanied by large increases in alpha-helical structure, indicating that folding and complex formation are linked. Surprisingly, we find that binary complex formation is extremely slow, with a second-order rate constant of approximately 3 M(-1) s(-1). An N-terminal regulatory domain of Sso1p accounts for slow assembly, since in its absence complexes assemble 2,000-fold more rapidly. Once binary complexes form, ternary complex formation is rapid and is not affected by the presence of the regulatory domain. Our results imply that proteins that accelerate SNARE assembly in vivo act by relieving inhibition by this regulatory domain.
细胞内运输小泡与其靶膜的融合需要锚定在相对膜上的SNARE蛋白组装。在这里,我们使用参与高尔基体到质膜运输的酵母SNARE的重组细胞质结构域,在体外研究这个组装过程。靶膜SNARE蛋白Sso1p和Sec9p之间形成二元复合物;这些二元复合物随后可以与小泡SNARE蛋白Snc2p结合形成三元复合物。二元和三元复合物的组装伴随着α-螺旋结构的大幅增加,表明折叠和复合物形成是相关联的。令人惊讶的是,我们发现二元复合物的形成极其缓慢,二级速率常数约为3 M⁻¹ s⁻¹。Sso1p的N端调节结构域导致组装缓慢,因为在没有它的情况下,复合物组装速度快2000倍。一旦二元复合物形成,三元复合物的形成就很快,并且不受调节结构域存在的影响。我们的结果表明,在体内加速SNARE组装的蛋白质通过解除该调节结构域的抑制作用来发挥作用。