Li S, Galbiati F, Volonte D, Sargiacomo M, Engelman J A, Das K, Scherer P E, Lisanti M P
Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
FEBS Lett. 1998 Aug 28;434(1-2):127-34. doi: 10.1016/s0014-5793(98)00945-4.
Caveolae are vesicular organelles with a characteristic uniform diameter in the range of 50-100 nm. Although recombinant expression of caveolin-1 is sufficient to drive caveolae formation, it remains unknown what controls the uniform diameter of these organelles. One hypothesis is that specific caveolin-caveolin interactions regulate the size of caveolae, as caveolin-1 undergoes two stages of self-oligomerization. To test this hypothesis directly, we have created two caveolin-1 deletion mutants that lack regions of caveolin-1 that are involved in directing the self-assembly of caveolin-1 oligomers. More specifically, Cav-1 delta61-100 lacks a region of the N-terminal domain that directs the formation of high molecular mass caveolin-1 homo-oligomers, while Cav-1 deltaC lacks a complete C-terminal domain that is required to allow caveolin homo-oligomers to interact with each other, forming a caveolin network. It is important to note that these two mutants retain an intact transmembrane domain. Our current results show that although Cav-1 delta61-100 and Cav-1 deltaC are competent to drive vesicle formation, these vesicles vary widely in their size and shape with diameters up to 500-1000 nm. In addition, caveolin-induced vesicle formation appears to be isoform-specific. Recombinant expression of caveolin-2 under the same conditions failed to drive the formation of vesicles, while caveolin-3 expression yielded caveolae-sized vesicles. These results are consistent with the previous observation that in transformed NIH 3T3 cells that lack caveolin-1 expression, but continue to express caveolin-2, no morphologically distinguishable caveolae are observed. In addition, as caveolin-2 alone exists mainly as a monomer or homo-dimer, while caveolins 1 and 3 exist as high molecular mass homo-oligomers, our results are consistent with the idea that the formation of high molecular mass oligomers of caveolin are required to regulate the formation of uniform caveolae-sized vesicles. In direct support of this notion, regulated induction of caveolin-1 expression in transformed NIH 3T3 cells was sufficient to recruit caveolin-2 to caveolae membranes. The ability of caveolin-1 to recruit caveolin-2 most likely occurs through a direct interaction between caveolins 1 and 2, as caveolins 1 and 2 are normally co-expressed and interact with each other to form high molecular mass hetero-oligomers containing both caveolins 1 and 2.
小窝是一种囊泡细胞器,其特征性的均匀直径在50 - 100纳米范围内。尽管小窝蛋白-1的重组表达足以驱动小窝的形成,但这些细胞器均匀直径的调控机制仍不清楚。一种假说认为,特定的小窝蛋白-小窝蛋白相互作用调节小窝的大小,因为小窝蛋白-1经历两个阶段的自我寡聚化。为了直接验证这一假说,我们构建了两个小窝蛋白-1缺失突变体,它们缺少小窝蛋白-1中参与指导小窝蛋白-1寡聚体自组装的区域。更具体地说,Cav-1 delta61-100缺少N端结构域中一个指导高分子量小窝蛋白-1同源寡聚体形成的区域,而Cav-1 deltaC缺少一个完整的C端结构域,该结构域是小窝蛋白同源寡聚体相互作用形成小窝蛋白网络所必需的。需要注意的是,这两个突变体保留了完整的跨膜结构域。我们目前的结果表明,尽管Cav-1 delta61-100和Cav-1 deltaC能够驱动囊泡形成,但这些囊泡的大小和形状差异很大,直径可达500 - 1000纳米。此外,小窝蛋白诱导的囊泡形成似乎具有亚型特异性。在相同条件下,小窝蛋白-2的重组表达未能驱动囊泡形成,而小窝蛋白-3的表达产生了小窝大小的囊泡。这些结果与之前的观察一致,即在缺乏小窝蛋白-1表达但继续表达小窝蛋白-2的转化NIH 3T3细胞中,未观察到形态上可区分的小窝。此外,由于单独的小窝蛋白-2主要以单体或同二聚体形式存在,而小窝蛋白1和3以高分子量同源寡聚体形式存在,我们的结果与以下观点一致,即小窝蛋白高分子量寡聚体的形成是调节均匀小窝大小囊泡形成所必需的。直接支持这一观点的是,在转化的NIH 3T3细胞中调节小窝蛋白-1的表达足以将小窝蛋白-2募集到小窝膜上。小窝蛋白-1募集小窝蛋白-2的能力很可能是通过小窝蛋白1和2之间的直接相互作用实现的,因为小窝蛋白1和2通常共同表达并相互作用形成同时包含小窝蛋白1和2的高分子量异源寡聚体。