Schmitz U, Donati A, James T L, Ulyanov N B, Yao L
Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA.
Biopolymers. 1998 Oct 15;46(5):329-42. doi: 10.1002/(SICI)1097-0282(19981015)46:5<329::AID-BIP4>3.0.CO;2-R.
Solution structures are typically average structures determined with the help of nmr-derived distance and torsion angle information. However, when a biomolecule populates significantly different conformations, the average structure might be prone to artifacts, and other refinement strategies are necessary. For example, when experimental restraints are used in molecular dynamics simulations in a time-averaged fashion (MDtar), the experimental structural information does no longer need to be satisfied at each step of the simulation; instead, the whole trajectory must agree with the restraints. However, the resulting structural ensembles are large and not unique and it is not trivial to extract the essential dynamic features for a system. Here we demonstrate that large MDtar ensembles can be simplified substantially by reducing the number of members to just a few on the basis of adjusting the individual probabilities of the members with the PDQPRO program [N. B. Ulyanov et al. Biophysical Journal (1995), Vol. 68, p. 13]. This algorithm finds the global minimum for a search function that represents the best match of a given ensemble with the experimental dipolar interproton relaxation rates. We have applied this strategy to a 17-residue RNA hairpin, whose loop exhibited considerable flexibility evident from nmr data. This 17mer is a mimic of the T psi C-loop of tRNA, where nucleotide 54 is usually a ribosylthymidine. The methylation of U54, which is completely buried in transfer ribonucleic acid, is administered by tRNA (m5 U54)-methyltransferase (RUMT). Since the 17mer is a good substrate for RUMT, we previously concluded that the flexibility of the 17mer's loop is a key to how RUMT gains access to the methylation site [L. J. Yao et al. Journal of Biomolecular NMR (1996) Vol. 9. p. 229]. Application of the PDQPRO algorithm to the previously acquired MDtar trajectories allowed us to reduce the number of conformations from several hundred to one major and five or six minor conformations with individual populations from approximately 5% to approximately 50% without any deterioration in the match with the experimental data. The major conformation exhibits a continuation of A-form helicity through part of the loop, involving C60 and U59. In this and most other conformations the methylation site in U54 is no longer buried.
溶液结构通常是借助核磁共振衍生的距离和扭转角信息确定的平均结构。然而,当生物分子具有显著不同的构象时,平均结构可能容易产生伪像,因此需要其他优化策略。例如,当实验约束以时间平均的方式用于分子动力学模拟(MDtar)时,实验结构信息在模拟的每个步骤中不再需要得到满足;相反,整个轨迹必须与约束条件一致。然而,得到的结构系综很大且不唯一,提取系统的基本动态特征并非易事。在此我们证明,通过使用PDQPRO程序 [N. B. 乌利亚诺夫等人,《生物物理杂志》(1995年),第68卷,第13页] 调整各成员的个体概率,可将大量的MDtar系综大幅简化为仅几个成员。该算法为一个搜索函数找到全局最小值,该搜索函数表示给定系综与实验偶极质子间弛豫率的最佳匹配。我们已将此策略应用于一个17个残基的RNA发夹结构,其环区表现出从核磁共振数据中明显可见的相当大的灵活性。这个17聚体模拟了tRNA的TψC环,其中核苷酸54通常是核糖胸苷。U54的甲基化完全埋在转移核糖核酸中,由tRNA(m5U54)-甲基转移酶(RUMT)进行。由于这个17聚体是RUMT的良好底物,我们之前得出结论,17聚体环区的灵活性是RUMT如何接近甲基化位点的关键 [L. J. 姚等人,《生物分子核磁共振杂志》(1996年),第9卷,第229页]。将PDQPRO算法应用于先前获得的MDtar轨迹,使我们能够将构象数量从几百个减少到一个主要构象和五六个次要构象,个体丰度从约5%到约50%,而与实验数据的匹配没有任何恶化。主要构象在环区的一部分表现出A-型螺旋的延续,涉及C60和U59。在这个构象以及大多数其他构象中,U54中的甲基化位点不再被掩埋。