Kojda G, Hacker A, Noack E
Institut für Pharmakologie, Heinrich-Heine-Universität, Düsseldorf, Germany.
Eur J Pharmacol. 1998 Aug 14;355(1):23-31. doi: 10.1016/s0014-2999(98)00460-9.
Pentaerythritol tetranitrate is an organic nitrate ester that undergoes metabolization to pentaerythritol, pentaerythritol trinitrate, pentaerythritol dinitrate and pentaerythritol mononitrate. Recent data suggested that pentaerythritol tetranitrate is endowed with vasoprotective activities in experimental atherosclerosis. This study was undertaken to gain insight into the underlying mechanism. The basic mechanism of action of all pentaerythritol nitrates was evaluated by measuring liberation of nitric oxide (NO), stimulation of human soluble guanylate cyclase and vasorelaxation in rabbit aorta. A subsequent in vivo study in New Zealand White rabbits was performed to investigate the effects of a 4 months lasting nonintermittent oral treatment with 6 mg pentaerythritol tetranitrate kg(-1) day(-1) on vascular superoxide production, endothelium dependent vasorelaxation and vasorelaxation to pentaerythritol tetranitrate itself. The formation rates of NO from the pentaerythritol nitrates (100 microM, n = 5) in presence of 5 mM cystein were (in nM min(-1)): 62.1 +/- 3.2 (pentaerythritol tetranitrate), 21.3 +/- 0.9 (pentaerythritol trinitrate), 6.4 +/- 0.6 (pentaerythritol dinitrate) and 3.2 +/- 0.4 (pentaerythritol mononitrate). Similarly, the pD2 values (-log M) for half-maximal activation of soluble guanylate cyclase decreased from pentaerythritol tetranitrate (3.391 +/- 0.09, n = 4) to pentaerythritol mononitrate (2.655 +/- 0.04, n = 3) as did the pD2 values (in -log M) for half-maximal relaxation of rabbit aortic rings (n = 7) from pentaerythritol tetranitrate (8.3 +/- 0.17) to pentaerythritol mononitrate (5.0 +/- 0.11). Significant correlations were found between the NO formation rates and the pD2 values for enzyme stimulation (r = 0.98, P = 0.002) and vasorelaxation (r = 0.90, P = 0.049) suggesting that these effects of the pentaerythritol nitrates were mediated by NO. The results of the in vivo study showed that aging induces a significant increase of aortic superoxide production (median values, n = 10) from 2.45 nM mg(-1) min(-1) (age 7 months) to 3.39 nM mg(-1) min(-1) (age 11 months, P < 0.01) that was prevented by concurrent treatment with pentaerythritol tetranitrate (2.76 nM mg(-1) min(-1)). In vitro vasorelaxation to pentaerythritol tetranitrate was identical in all groups indicating absence of nitrate tolerance. Endothelium-dependent vasorelaxation was also identical in all groups. These data suggest that oral treatment with pentaerythritol tetranitrate reduces vascular oxidant stress by an NO-dependent pathway, which may contribute to the vasoprotective activity of pentaerythritol tetranitrate in experimental atherosclerosis.
季戊四醇四硝酸酯是一种有机硝酸酯,可代谢生成季戊四醇、季戊四醇三硝酸酯、季戊四醇二硝酸酯和季戊四醇单硝酸酯。最近的数据表明,季戊四醇四硝酸酯在实验性动脉粥样硬化中具有血管保护活性。本研究旨在深入了解其潜在机制。通过测量一氧化氮(NO)的释放、刺激人可溶性鸟苷酸环化酶以及兔主动脉的血管舒张,评估了所有季戊四醇硝酸盐的基本作用机制。随后在新西兰白兔身上进行了一项体内研究,以调查每天口服6 mg·kg⁻¹的季戊四醇四硝酸酯,持续4个月的非间歇性治疗对血管超氧化物生成、内皮依赖性血管舒张以及对季戊四醇四硝酸酯本身的血管舒张的影响。在存在5 mM半胱氨酸的情况下,季戊四醇硝酸盐(100 μM,n = 5)生成NO的速率(以nM·min⁻¹计)分别为:62.1±3.2(季戊四醇四硝酸酯)、21.3±0.9(季戊四醇三硝酸酯)、6.4±0.6(季戊四醇二硝酸酯)和3.2±0.4(季戊四醇单硝酸酯)。同样,可溶性鸟苷酸环化酶半最大激活的pD2值(-log M)从季戊四醇四硝酸酯(3.391±0.09,n = 4)降至季戊四醇单硝酸酯(2.655±0.04,n = 3),兔主动脉环半最大舒张的pD2值(以-log M计)也从季戊四醇四硝酸酯(8.3±0.17)降至季戊四醇单硝酸酯(5.0±0.11)(n = 7)。在NO生成速率与酶刺激的pD2值(r = 0.98,P = 0.002)以及血管舒张的pD2值(r = 0.90,P = 0.049)之间发现了显著相关性,表明季戊四醇硝酸盐的这些作用是由NO介导的。体内研究结果表明,衰老会导致主动脉超氧化物生成显著增加(中位数,n = 10),从2.45 nM·mg⁻¹·min⁻¹(7个月龄)增至3.39 nM·mg⁻¹·min⁻¹(11个月龄,P < 0.01),而同时给予季戊四醇四硝酸酯治疗可预防这种增加(2.76 nM·mg⁻¹·min⁻¹)。所有组对季戊四醇四硝酸酯的体外血管舒张作用相同,表明不存在硝酸盐耐受性。所有组的内皮依赖性血管舒张也相同。这些数据表明,口服季戊四醇四硝酸酯通过NO依赖性途径降低血管氧化应激,这可能有助于季戊四醇四硝酸酯在实验性动脉粥样硬化中的血管保护活性。