Christopoulos A
University of Minnesota Medical School, Minneapolis 55455, USA.
Trends Pharmacol Sci. 1998 Sep;19(9):351-7. doi: 10.1016/s0165-6147(98)01240-1.
It is quite common to see experimental data analysed according to a variety of models of ligand-receptor interaction. Often, parameters derived from such models are compared statistically. The most commonly employed statistical analyses contain explicit assumptions about the underlying distributions of the model parameters being compared, yet the validity of these assumptions is not often ascertained. In this article, Arthur Christopoulos describes a general approach to Monte Carlo simulation of data, and outlines how the analysis of such simulated data may be used to address the question of the distribution of model parameters. The results of such an exercise can guide the researcher to the appropriate choice of statistical test or data transform.
根据各种配体-受体相互作用模型来分析实验数据是很常见的。通常,会对从这些模型中得出的参数进行统计比较。最常用的统计分析对所比较的模型参数的潜在分布包含明确的假设,但这些假设的有效性却常常未得到确定。在本文中,亚瑟·克里斯托普洛斯描述了一种数据蒙特卡罗模拟的通用方法,并概述了如何利用对这类模拟数据的分析来解决模型参数分布的问题。这样一项工作的结果可以指导研究人员做出合适的统计检验或数据转换选择。