Suppr超能文献

脑特异性无机磷酸盐转运体的定位表明其在谷氨酸能传递中具有特定的突触前作用。

The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission.

作者信息

Bellocchio E E, Hu H, Pohorille A, Chan J, Pickel V M, Edwards R H

机构信息

Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, University of California San Francisco School of Medicine, San Francisco, California 94143, USA.

出版信息

J Neurosci. 1998 Nov 1;18(21):8648-59. doi: 10.1523/JNEUROSCI.18-21-08648.1998.

Abstract

Molecular cloning has recently identified a vertebrate brain-specific Na+-dependent inorganic phosphate transporter (BNPI). BNPI has strong sequence similarity to EAT-4, a Caenorhabditis elegans protein implicated in glutamatergic transmission. To characterize the physiological role of BNPI, we have generated an antibody to the protein. Immunocytochemistry of rat brain sections shows a light microscopic pattern that is suggestive of reactivity in nerve terminals. Excitatory projections are labeled prominently, and ultrastructural analysis confirms that BNPI localizes almost exclusively to terminals forming asymmetric excitatory-type synapses. Although BNPI depends on a Na+ gradient and presumably functions at the plasma membrane, both electron microscopy and biochemical fractionation show that BNPI associates preferentially with the membranes of small synaptic vesicles. The results provide anatomic evidence of a specific presynaptic role for BNPI in glutamatergic neurotransmission, consistent with the phenotype of eat-4 mutants. Because an enzyme known as the phosphate-activated glutaminase produces glutamate for release as a neurotransmitter, BNPI may augment excitatory transmission by increasing cytoplasmic phosphate concentrations within the nerve terminal and hence increasing glutamate synthesis. Expression of BNPI on synaptic vesicles suggests a mechanism for neural activity to regulate the function of BNPI.

摘要

分子克隆技术最近鉴定出一种脊椎动物脑特异性的钠离子依赖性无机磷酸转运体(BNPI)。BNPI与EAT - 4具有很强的序列相似性,EAT - 4是一种与秀丽隐杆线虫谷氨酸能传递有关的蛋白质。为了阐明BNPI的生理作用,我们制备了针对该蛋白的抗体。大鼠脑切片的免疫细胞化学显示出一种光学显微镜下的模式,提示在神经末梢有反应性。兴奋性投射被显著标记,超微结构分析证实BNPI几乎完全定位于形成不对称兴奋性突触的末梢。尽管BNPI依赖钠离子梯度且可能在质膜发挥作用,但电子显微镜和生化分级分离均显示BNPI优先与小突触囊泡的膜结合。这些结果为BNPI在谷氨酸能神经传递中特定的突触前作用提供了解剖学证据,这与eat - 4突变体的表型一致。由于一种名为磷酸激活型谷氨酰胺酶的酶可产生谷氨酸作为神经递质释放,BNPI可能通过增加神经末梢内的细胞质磷酸盐浓度从而增加谷氨酸合成来增强兴奋性传递。BNPI在突触囊泡上的表达提示了一种神经活动调节BNPI功能的机制。

相似文献

5
The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons.
J Neurosci. 2001 Nov 15;21(22):RC181. doi: 10.1523/JNEUROSCI.21-22-j0001.2001.
6
Complementary distribution of vesicular glutamate transporters in the central nervous system.
Neurosci Res. 2002 Apr;42(4):243-50. doi: 10.1016/s0168-0102(02)00009-3.
10
Cloning and expression of a cDNA encoding a brain-specific Na(+)-dependent inorganic phosphate cotransporter.
Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5607-11. doi: 10.1073/pnas.91.12.5607.

引用本文的文献

1
A Toolkit for Mapping and Modulating Neurotransmission at Single-Cell Resolution.
bioRxiv. 2025 Aug 18:2025.08.18.670838. doi: 10.1101/2025.08.18.670838.
2
Codon Usage Bias: A Potential Factor Affecting VGLUT Developmental Expression and Protein Evolution.
Mol Neurobiol. 2025 Mar;62(3):3508-3522. doi: 10.1007/s12035-024-04426-8. Epub 2024 Sep 21.
3
Adaptor protein AP-3 produces synaptic vesicles that release at high frequency by recruiting phospholipid flippase ATP8A1.
Nat Neurosci. 2023 Oct;26(10):1685-1700. doi: 10.1038/s41593-023-01434-0. Epub 2023 Sep 18.
4
Novel types of frequency filtering in the lateral perforant path projections to dentate gyrus.
J Physiol. 2022 Aug;600(16):3865-3896. doi: 10.1113/JP283012. Epub 2022 Aug 1.
5
Amyloid-β oligomers in the nucleus accumbens decrease motivation via insertion of calcium-permeable AMPA receptors.
Mol Psychiatry. 2022 Apr;27(4):2146-2157. doi: 10.1038/s41380-022-01459-0. Epub 2022 Feb 2.
6
Glutamic Acid Transporters: Targets for Neuroprotective Therapies in Parkinson's Disease.
Front Neurosci. 2021 Jun 16;15:678154. doi: 10.3389/fnins.2021.678154. eCollection 2021.
7
Molecular, Structural, Functional, and Pharmacological Sites for Vesicular Glutamate Transporter Regulation.
Mol Neurobiol. 2020 Jul;57(7):3118-3142. doi: 10.1007/s12035-020-01912-7. Epub 2020 May 30.
8
Research progress on the role of type I vesicular glutamate transporter (VGLUT1) in nervous system diseases.
Cell Biosci. 2020 Mar 4;10:26. doi: 10.1186/s13578-020-00393-4. eCollection 2020.
9
Vestibular neurons with direct projections to the solitary nucleus in the rat.
J Neurophysiol. 2019 Aug 1;122(2):512-524. doi: 10.1152/jn.00082.2019. Epub 2019 Jun 5.
10
Expression of Neurofilament Subunits at Neocortical Glutamatergic and GABAergic Synapses.
Front Neuroanat. 2018 Sep 11;12:74. doi: 10.3389/fnana.2018.00074. eCollection 2018.

本文引用的文献

1
Phosphate exchange in nerve.
J Cell Comp Physiol. 1954 Aug;44(1):77-86. doi: 10.1002/jcp.1030440107.
4
Inorganic phosphate enhances phosphonucleotide concentrations in cultured fetal rat cortical neurons.
Brain Res. 1997 May 16;757(1):85-92. doi: 10.1016/s0006-8993(97)00162-5.
6
Identification of chemical synapses in the pharynx of Caenorhabditis elegans.
Proc Natl Acad Sci U S A. 1997 May 27;94(11):5912-6. doi: 10.1073/pnas.94.11.5912.
7
Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance.
Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4155-60. doi: 10.1073/pnas.94.8.4155.
8
Sodium-dependent transport of phosphate in neuronal and related cells.
Biochim Biophys Acta. 1997 Apr 3;1325(1):34-40. doi: 10.1016/s0005-2736(96)00238-6.
9
The role of vesicular transport proteins in synaptic transmission and neural degeneration.
Annu Rev Neurosci. 1997;20:125-56. doi: 10.1146/annurev.neuro.20.1.125.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验