Suppr超能文献

Physiologically based pharmacokinetics of cyclosporine A: extension to tissue distribution kinetics in rats and scale-up to human.

作者信息

Kawai R, Mathew D, Tanaka C, Rowland M

机构信息

Drug Metabolism and Pharmacokinetics, Novartis Pharma AG CH-4002, Basel, Switzerland.

出版信息

J Pharmacol Exp Ther. 1998 Nov;287(2):457-68.

PMID:9808668
Abstract

The tissue distribution kinetics of i.v. Cyclosporine A (CyA) was investigated extensively in rats. The concentration-to-time data of 11 organs were analyzed separately using local physiologically based pharmacokinetic models, involving nonlinear plasma-to-blood cell distribution, membrane-permeability-limited plasma-to-tissue distribution and either linear or nonlinear tissue binding. Two global physiologically based pharmacokinetic models were then evaluated, each comprising arterial and venous pools together with the 11 organs, adopting either of the two local models. Both global models successfully described the blood and tissue distribution kinetics of CyA. In nonlinear model, the estimated dissociation constants (Kd) for the intracellular saturable binding ranged 0.2 to 60 ng/ml among the organs, which are comparable with values reported for cyclophilin-CyA binding in vitro. The predicted human pharmacokinetic profile using the physiologically based pharmacokinetic models, after scale-up of physiological parameters from rat to human, generally agreed with the observations following i.v. and oral administration, with moderate discrepancies due presumably to uncharacterized species differences and/or the effect of i.v. vehicle on the CyA binding in plasma. Nevertheless, the models allow reasonable prediction of drug exposure at the biological target, i.e., intracellular, unbound CyA, which may differ among various organs according to the local physiological elements, e.g., tissue cellular membrane permeability. As well as helping optimize the CyA regimen in patients, who are likely to exhibit a variety of physiological and pathological conditions, the modeling suggests possible insights into the known grafted-organ specific efficacy of CyA.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验