Boyd R A, Hogstrom K R, Rosen I I
Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA.
Med Phys. 1998 Nov;25(11):2176-85. doi: 10.1118/1.598414.
This work compares the accuracy of dose distributions computed using an incident polyenergetic (PE) spectrum and a monoenergetic (ME) spectrum in the electron pencil-beam redefinition algorithm (PBRA). It also compares the times required to compute PE and ME dose distributions. This has been accomplished by comparing PBRA calculated dose distributions with measured dose distributions in water from the National Cancer Institute electron collaborative working group (ECWG) data set. Comparisons are made at 9 and 20 MeV for the 15 x 15 cm2 and 6 x 6 cm2 fields at 100- and 110-cm SSD. The incident PE spectrum is determined by a process that best matches the weighted sum of monoenergetic PBRA calculated central-axis depth doses, each calculated with the energy correction factor, C(E), equal to unity, to the ECWG measured depth dose for the 15 x 15 cm2 field at 100-cm SSD. C(E) is determined by a least square fit to central-axis depth dose for the PE PBRA. Results show that both the PE and ME PBRA accurately calculate central-axis depth dose at 100-cm SSD for the 6 x 6 cm2 and 15 x 15 cm2 field sizes and also at 110-cm SSD for the 15 x 15 cm2 field size. In the penumbral region, the PE PBRA calculation is significantly more accurate than the ME PBRA for all measurement conditions. Both the PE and ME PBRA exhibit significant dose errors (> 4%) outside the penumbra at shallow depths for the 6 x 6 cm2 and 15 x 15 cm2 fields at 100-cm SSD and inside the penumbra at shallow depths for the 6 x 6 cm2 field size at 110-cm SSD. These errors are attributed to the fact that the PBRA does not model collimator scatter in the incident beam. Calculation times for the PE PBRA are approximately 70%-140% greater than those for the ME PBRA. We conclude that the PE PBRA is significantly more accurate than the ME PBRA, and we believe that the increase in time for the PE PBRA will not significantly impact the clinical utility of the PBRA.
这项工作比较了在电子笔形束重新定义算法(PBRA)中,使用入射多能(PE)谱和单能(ME)谱计算剂量分布的准确性。它还比较了计算PE和ME剂量分布所需的时间。这是通过将PBRA计算的剂量分布与来自美国国家癌症研究所电子协作工作组(ECWG)数据集的水中测量剂量分布进行比较来完成的。在100和110厘米源皮距(SSD)下,对15×15平方厘米和6×6平方厘米射野,在9兆电子伏和20兆电子伏能量下进行比较。入射PE谱由一个过程确定,该过程使单能PBRA计算的中心轴深度剂量的加权和(每个剂量用能量校正因子C(E)计算,C(E)等于1)与100厘米SSD下15×15平方厘米射野的ECWG测量深度剂量最佳匹配。C(E)通过对PE PBRA的中心轴深度剂量进行最小二乘拟合来确定。结果表明,对于6×6平方厘米和15×15平方厘米射野尺寸,在100厘米SSD时,以及对于15×15平方厘米射野尺寸在110厘米SSD时,PE和ME PBRA都能准确计算中心轴深度剂量。在半影区,对于所有测量条件,PE PBRA计算比ME PBRA显著更准确。对于100厘米SSD下6×6平方厘米和15×15平方厘米射野,在浅深度半影区外以及110厘米SSD下6×6平方厘米射野尺寸在浅深度半影区内,PE和ME PBRA都表现出显著的剂量误差(>4%)。这些误差归因于PBRA没有对入射束中的准直器散射进行建模。PE PBRA的计算时间比ME PBRA大约长70%-140%。我们得出结论,PE PBRA比ME PBRA显著更准确,并且我们认为PE PBRA计算时间的增加不会对PBRA的临床应用产生显著影响。