Suppr超能文献

Quantum chemical calculations of the reorganization energy of blue-copper proteins.

作者信息

Olsson M H, Ryde U, Roos B O

机构信息

Department of Theoretical Chemistry, Lund University, Chemical Centre, Sweden.

出版信息

Protein Sci. 1998 Dec;7(12):2659-68. doi: 10.1002/pro.5560071220.

Abstract

The inner-sphere reorganization energy for several copper complexes related to the active site in blue-copper protein has been calculated with the density functional B3LYP method. The best model of the blue-copper proteins, Cu(Im)2(SCH3)(S(CH3)2)(0/+), has a self-exchange inner-sphere reorganization energy of 62 kJ/mol, which is at least 120 kJ/mol lower than for Cu(H2O)4(+/2+). This lowering of the reorganization energy is caused by the soft ligands in the blue-copper site, especially the cysteine thiolate and the methionine thioether groups. Soft ligands both make the potential surfaces of the complexes flatter and give rise to oxidized structures that are quite close to a tetrahedron (rather than tetragonal). Approximately half of the reorganization energy originates from changes in the copper-ligand bond lengths and half of this contribution comes from the Cu-S(Cys) bond. A tetragonal site, which is present in the rhombic type 1 blue-copper proteins, has a slightly higher (16 kJ/mol) inner-sphere reorganization energy than a trigonal site, present in the axial type 1 copper proteins. A site with the methionine ligand replaced by an amide group, as in stellacyanin, has an even higher reorganization energy, about 90 kJ/mol.

摘要

相似文献

1
Quantum chemical calculations of the reorganization energy of blue-copper proteins.
Protein Sci. 1998 Dec;7(12):2659-68. doi: 10.1002/pro.5560071220.
2
Protein strain in blue copper proteins studied by free energy perturbations.
Proteins. 1999 Aug 1;36(2):157-74. doi: 10.1002/(sici)1097-0134(19990801)36:2<157::aid-prot3>3.0.co;2-y.
4
A theoretical investigation of the functional role of the axial methionine ligand of the Cu(A) site in cytochrome c oxidase.
Biochim Biophys Acta. 2011 Oct;1807(10):1314-27. doi: 10.1016/j.bbabio.2011.06.014. Epub 2011 Jun 30.
5
The cupric geometry of blue copper proteins is not strained.
J Mol Biol. 1996 Aug 30;261(4):586-96. doi: 10.1006/jmbi.1996.0484.
6
Axial interactions in the mixed-valent CuA active site and role of the axial methionine in electron transfer.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14658-63. doi: 10.1073/pnas.1314242110. Epub 2013 Aug 20.
9

引用本文的文献

2
In situ characterization of cofacial Co(IV) centers in CoO cubane: Modeling the high-valent active site in oxygen-evolving catalysts.
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):3855-3860. doi: 10.1073/pnas.1701816114. Epub 2017 Mar 27.
4
Copper Oxidation/Reduction in Water and Protein: Studies with DFTB3/MM and VALBOND Molecular Dynamics Simulations.
J Phys Chem B. 2016 Mar 3;120(8):1894-910. doi: 10.1021/acs.jpcb.5b09656. Epub 2015 Dec 17.
5
Electron transfer and reaction mechanism of laccases.
Cell Mol Life Sci. 2015 Mar;72(5):869-83. doi: 10.1007/s00018-014-1826-6. Epub 2015 Jan 9.
6
Anisotropic covalency contributions to superexchange pathways in type one copper active sites.
J Am Chem Soc. 2014 Oct 22;136(42):15034-45. doi: 10.1021/ja508361h. Epub 2014 Oct 13.
7
Mechanisms for control of biological electron transfer reactions.
Bioorg Chem. 2014 Dec;57:213-221. doi: 10.1016/j.bioorg.2014.06.006. Epub 2014 Jul 12.
8
Electron flow through metalloproteins.
Chem Rev. 2014 Apr 9;114(7):3369-80. doi: 10.1021/cr4004715. Epub 2013 Nov 27.
9
Axial interactions in the mixed-valent CuA active site and role of the axial methionine in electron transfer.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14658-63. doi: 10.1073/pnas.1314242110. Epub 2013 Aug 20.
10
Understanding rubredoxin redox sites by density functional theory studies of analogues.
J Phys Chem A. 2012 Sep 6;116(35):8918-24. doi: 10.1021/jp3057509. Epub 2012 Aug 27.

本文引用的文献

1
Structural and Functional Aspects of Metal Sites in Biology.
Chem Rev. 1996 Nov 7;96(7):2239-2314. doi: 10.1021/cr9500390.
2
Electrostatic effects on electron-transfer kinetics in the cytochrome f-plastocyanin complex.
Biophys J. 1997 Dec;73(6):3265-76. doi: 10.1016/S0006-3495(97)78351-6.
3
The cupric geometry of blue copper proteins is not strained.
J Mol Biol. 1996 Aug 30;261(4):586-96. doi: 10.1006/jmbi.1996.0484.
4
Energised (entatic) states of groups and of secondary structures in proteins and metalloproteins.
Eur J Biochem. 1995 Dec 1;234(2):363-81. doi: 10.1111/j.1432-1033.1995.363_b.x.
5
Blue copper proteins as a model for investigating electron transfer processes within polypeptide matrices.
Biophys Chem. 1994 May;50(1-2):203-16. doi: 10.1016/0301-4622(94)85032-1.
6
Crystal structure analyses of reduced (CuI) poplar plastocyanin at six pH values.
J Mol Biol. 1986 Nov 20;192(2):361-87. doi: 10.1016/0022-2836(86)90371-2.
7
Copper protein structures.
Adv Protein Chem. 1991;42:145-97. doi: 10.1016/s0065-3233(08)60536-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验