Fernández J, Roegiers F, Cantillana V, Sardet C
Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago.
Int J Dev Biol. 1998 Nov;42(8):1075-84.
Leech and ascidian embryos are well suited for the study of certain developmental processes. Although leeches and ascidians belong to different bilateralia groups (protostomes and deuterostomes, respectively) they share important developmental features and, in particular, the determinate character of their embryogenesis. In both types of embryos this property is related to the presence of specific cytoplasmic domains that are selectively allocated to different blastomeres during cleavage. In this review leech and ascidian eggs and zygotes are compared in terms of the structure of these cytoplasmic domains and of the cellular mechanisms involved in their formation and localization. During meiosis the zygote of leeches and ascidians undergo stereotypic actin-dependent contraction movements related to both the emission of the polar bodies and the formation and relocalization of cytoplasmic domains. After completion of meiosis, during first interphase, monaster microtubules nucleated from the sperm-derived centrosome play a key role in pronuclear migration. In addition, these astral microtubules direct the relocalization of cytoplasmic domains and the translocation and accumulation of organelles in the interior of the zygote. Microtubules and microfilaments, on the other hand, are involved in cortical reorganizations and organelle translocations in both zygote species during interphase and cleavage divisions. In the case of leech zygotes, this process leads to formation of characteristic polar cytoplasmic domains called teloplasms. These domains are selectively inherited by teloblasts, precursor stem cells of ectodermal and mesodermal tissues in the leech embryo. In the ascidian zygote, the cytoplasmic movements observed during interphase and mitosis lead to relocalization of the bulk of a mitochondria-rich domain, called the myoplasm, along with an endoplasmic reticulum-rich domain towards the future posterior pole of the embryo. The myoplasm is inherited by a subset of posterior blastomeres committed to become the primary muscle cells of the ascidian tadpole.
水蛭和海鞘胚胎非常适合用于某些发育过程的研究。尽管水蛭和海鞘分别属于不同的两侧对称动物类群(原口动物和后口动物),但它们具有重要的发育特征,尤其是胚胎发生的确定性特征。在这两种胚胎中,这种特性与特定细胞质区域的存在有关,这些区域在卵裂过程中被选择性地分配到不同的卵裂球中。在这篇综述中,将从这些细胞质区域的结构以及其形成和定位所涉及的细胞机制方面,对水蛭和海鞘的卵及合子进行比较。在减数分裂过程中,水蛭和海鞘的合子会经历与极体排放以及细胞质区域的形成和重新定位相关的典型肌动蛋白依赖性收缩运动。减数分裂完成后,在第一次间期,从精子来源的中心体产生的单星体微管在原核迁移中起关键作用。此外,这些星体微管指导细胞质区域的重新定位以及合子内部细胞器的转运和积累。另一方面,微管和微丝在间期及卵裂期参与了两种合子物种的皮质重组和细胞器转运。就水蛭合子而言,这个过程导致形成称为端质的特征性极性细胞质区域。这些区域被端细胞选择性遗传,端细胞是水蛭胚胎中外胚层和中胚层组织的前体干细胞。在海鞘合子中,在间期和有丝分裂期间观察到的细胞质运动导致富含线粒体的区域(称为肌质)以及富含内质网的区域大部分重新定位到胚胎未来的后极。肌质被一部分注定成为海鞘蝌蚪主要肌肉细胞的后极卵裂球继承。