Suppr超能文献

关于共同祖先的例证:驱动蛋白、肌球蛋白运动蛋白与G蛋白。

The case for a common ancestor: kinesin and myosin motor proteins and G proteins.

作者信息

Kull F J, Vale R D, Fletterick R J

机构信息

Howard Hughes Medical Institute, University of California, San Francisco, USA.

出版信息

J Muscle Res Cell Motil. 1998 Nov;19(8):877-86. doi: 10.1023/a:1005489907021.

Abstract

Recent studies have shown surprising structural and functional similarities between the motor domains of kinesin and myosin. Common features have also been described for motor proteins and G proteins. Despite these similarities, the evolutionary relationships between these proteins, even among the motor proteins, has not been obvious, since the topological connectivities of the core overlapping structural elements in these transducing proteins are not identical to one another. Using secondary structure topology, comparison of functional domains and active site chemistry as criteria for relatedness, we propose a set of rules for determining potential evolutionary relationships between proteins showing little or no sequence identity. These rules were used to explore the evolutionary relationship between kinesin and myosin, as well as between motor proteins and other phosphate-loop (P-loop) containing nucleotide-binding proteins. We demonstrate that kinesin and myosin show significant chemical conservations within and outside of the active site, and present an evolutionary scheme that produce their respective topologies from a hypothetical ancestral protein. We also show that, when compared with various other P-loop-containing proteins, the cytoskeletal motors are most similar to G proteins with respect to topology and active site chemistry. We conclude that kinesin and myosin, and possibly G proteins, are probably directly related via divergent evolution from a common core nucleotide-binding motif, and describe the likely topology of this ancestor. These proteins use similar chemical and physical mechanisms to both sense the state of the nucleotide bound in the active site, and then transmit these changes to protein partners. The different topologies can be accounted for by unique genetic insertions that add to the edge of a progenitor protein structure and do not disrupt the hydrophobic core.

摘要

最近的研究表明,驱动蛋白和肌球蛋白的运动结构域在结构和功能上存在惊人的相似性。运动蛋白和G蛋白也具有共同特征。尽管存在这些相似性,但这些蛋白质之间的进化关系,即使在运动蛋白之间,也并不明显,因为这些转导蛋白中核心重叠结构元件的拓扑连接性彼此并不相同。我们以二级结构拓扑、功能域比较和活性位点化学作为相关性标准,提出了一套规则,用于确定序列同一性很少或没有序列同一性的蛋白质之间的潜在进化关系。这些规则被用于探索驱动蛋白和肌球蛋白之间,以及运动蛋白与其他含磷酸环(P环)的核苷酸结合蛋白之间的进化关系。我们证明,驱动蛋白和肌球蛋白在活性位点内外都表现出显著的化学保守性,并提出了一种进化方案,该方案从一种假设的祖先蛋白产生它们各自的拓扑结构。我们还表明,与其他各种含P环的蛋白质相比,细胞骨架运动蛋白在拓扑结构和活性位点化学方面与G蛋白最为相似。我们得出结论,驱动蛋白和肌球蛋白,可能还有G蛋白,可能通过从一个共同的核心核苷酸结合基序的趋异进化直接相关,并描述了这个祖先可能的拓扑结构。这些蛋白质使用相似的化学和物理机制来感知活性位点中结合的核苷酸的状态,然后将这些变化传递给蛋白质伴侣。不同的拓扑结构可以通过独特的基因插入来解释,这些插入添加到祖蛋白结构的边缘,并且不会破坏疏水核心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验