Suppr超能文献

Articulated external fixation of the ankle: minimizing motion resistance by accurate axis alignment.

作者信息

Bottlang M, Marsh J L, Brown T D

机构信息

Biomedical Engineering, The University of Iowa, Iowa City 52240, USA.

出版信息

J Biomech. 1999 Jan;32(1):63-70. doi: 10.1016/s0021-9290(98)00143-2.

Abstract

This study describes how an optimal single hinge axis position can be established for the application of articulated external fixation to the ankle joint. By deliberately introducing various amounts of relative mal-alignment between the optimal talocrural joint axis and the actual fixator hinge axis, it was possible to measure the corresponding amounts of additional resistance to joint motion. In a cadaveric study of six ankle specimens, we determined the instant axis of rotation of the talocrural joint from 3-D kinematic data. acquired by an electromagnetic motion tracking system. For each specimen, an optimal fixator hinge position was calculated from these motion data. Compared to the intact natural joint, aligning the fixator along the optimized axis position caused a moderate increase in energy (0.14 J) needed to rotate the ankle through a prescribed plantar/dorsiflexion range. However, malpositioning the hinge by 10 mm caused more than five times that amount of increase in motion resistance. While articulated external fixation with limited internal fixation can establish a favorable environment for the repair of severe injuries such as tibial pilon fractures, the large additional resistance to motion accompanying a malpositioned fixator axis suggests the development of untoward intra-articular forces that could act to disturb fragment alignment.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验