Suppr超能文献

蛋白质和酶中锌-硫配位位点的硒氧化还原生物化学

Selenium redox biochemistry of zinc-sulfur coordination sites in proteins and enzymes.

作者信息

Jacob C, Maret W, Vallee B L

机构信息

Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, Seeley G. Mudd Building, 250 Longwood Avenue, Boston, MA 02115, USA.

出版信息

Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):1910-4. doi: 10.1073/pnas.96.5.1910.

Abstract

Selenium has been increasingly recognized as an essential element in biology and medicine. Its biochemistry resembles that of sulfur, yet differs from it by virtue of both redox potentials and stabilities of its oxidation states. Selenium can substitute for the more ubiquitous sulfur of cysteine and as such plays an important role in more than a dozen selenoproteins. We have chosen to examine zinc-sulfur centers as possible targets of selenium redox biochemistry. Selenium compounds release zinc from zinc/thiolate-coordination environments, thereby affecting the cellular thiol redox state and the distribution of zinc and likely of other metal ions. Aromatic selenium compounds are excellent spectroscopic probes of the otherwise relatively unstable functional selenium groups. Zinc-coordinated thiolates, e.g., metallothionein (MT), and uncoordinated thiolates, e.g., glutathione, react with benzeneseleninic acid (oxidation state +2), benzeneselenenyl chloride (oxidation state 0) and selenocystamine (oxidation state -1). Benzeneseleninic acid and benzeneselenenyl chloride react very rapidly with MT and titrate substoichiometrically and with a 1:1 stoichiometry, respectively. Selenium compounds also catalyze the release of zinc from MT in peroxidation and thiol/disulfide-interchange reactions. The selenoenzyme glutathione peroxidase catalytically oxidizes MT and releases zinc in the presence of t-butyl hydroperoxide, suggesting that this type of redox chemistry may be employed in biology for the control of metal metabolism. Moreover, selenium compounds are likely targets for zinc/thiolate coordination centers in vivo, because the reactions are only partially suppressed by excess glutathione. This specificity and the potential to undergo catalytic reactions at low concentrations suggests that zinc release is a significant aspect of the therapeutic antioxidant actions of selenium compounds in antiinflammatory and anticarcinogenic agents.

摘要

硒在生物学和医学中日益被视为一种必需元素。它的生物化学性质与硫相似,但由于其氧化还原电位和氧化态稳定性的不同而与硫有所差异。硒可以替代半胱氨酸中更为常见的硫,因此在十几种硒蛋白中发挥着重要作用。我们选择研究锌 - 硫中心,将其作为硒氧化还原生物化学的可能靶点。硒化合物可从锌/硫醇盐配位环境中释放锌,从而影响细胞内硫醇的氧化还原状态以及锌的分布,可能还会影响其他金属离子的分布。芳香族硒化合物是其他相对不稳定的功能性硒基团的优良光谱探针。锌配位的硫醇盐,如金属硫蛋白(MT),以及未配位的硫醇盐,如谷胱甘肽,会与苯亚硒酸(氧化态 +2)、苯硒酰氯(氧化态 0)和硒代胱胺(氧化态 -1)发生反应。苯亚硒酸和苯硒酰氯与 MT 反应非常迅速,分别以亚化学计量和 1:1 的化学计量进行滴定。在过氧化和硫醇/二硫键交换反应中,硒化合物还能催化从 MT 中释放锌。硒酶谷胱甘肽过氧化物酶在叔丁基过氧化氢存在的情况下催化氧化 MT 并释放锌,这表明这种氧化还原化学作用可能在生物学中用于控制金属代谢。此外,硒化合物很可能是体内锌/硫醇盐配位中心的靶点,因为过量的谷胱甘肽只能部分抑制这些反应。这种特异性以及在低浓度下发生催化反应的潜力表明,锌的释放是硒化合物在抗炎和抗癌药物中发挥治疗性抗氧化作用的一个重要方面。

相似文献

1
Selenium redox biochemistry of zinc-sulfur coordination sites in proteins and enzymes.
Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):1910-4. doi: 10.1073/pnas.96.5.1910.
2
Catalytic oxidation of zinc/sulfur coordination sites in proteins by selenium compounds.
Antioxid Redox Signal. 2001 Aug;3(4):651-6. doi: 10.1089/15230860152542998.
3
Catalytic selenols couple the redox cycles of metallothionein and glutathione.
Eur J Biochem. 2001 Jun;268(11):3346-53. doi: 10.1046/j.1432-1327.2001.02250.x.
4
The function of zinc metallothionein: a link between cellular zinc and redox state.
J Nutr. 2000 May;130(5S Suppl):1455S-8S. doi: 10.1093/jn/130.5.1455S.
5
Ebselen, a selenium-containing redox drug, releases zinc from metallothionein.
Biochem Biophys Res Commun. 1998 Jul 30;248(3):569-73. doi: 10.1006/bbrc.1998.9026.
6
Interaction of selenium compounds with zinc finger proteins involved in DNA repair.
Eur J Biochem. 2004 Aug;271(15):3190-9. doi: 10.1111/j.1432-1033.2004.04251.x.
7
Oxidative metal release from metallothionein via zinc-thiol/disulfide interchange.
Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):237-41. doi: 10.1073/pnas.91.1.237.
8
Control of zinc transfer between thionein, metallothionein, and zinc proteins.
Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3489-94. doi: 10.1073/pnas.95.7.3489.
9
Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc.
Exp Gerontol. 2008 May;43(5):363-9. doi: 10.1016/j.exger.2007.11.005. Epub 2007 Nov 28.
10
A differential assay for the reduced and oxidized states of metallothionein and thionein.
Anal Biochem. 2004 Oct 1;333(1):19-26. doi: 10.1016/j.ab.2004.04.039.

引用本文的文献

1
The Targeted Regulation of BDUbc and BDSKL1 Enhances Resistance to Blight in × .
Int J Mol Sci. 2024 Jan 1;25(1):569. doi: 10.3390/ijms25010569.
2
Study on the relationship between selenium and cadmium in diseased human lungs.
Adv Redox Res. 2023 Apr;7. doi: 10.1016/j.arres.2023.100065. Epub 2023 Feb 18.
3
Bert Vallee-A 20th Century Adventure(r) in Zincology.
Int J Mol Sci. 2021 Dec 13;22(24):13393. doi: 10.3390/ijms222413393.
4
The Enigmatic Metallothioneins: A Case of Upward-Looking Research.
Int J Mol Sci. 2021 Jun 1;22(11):5984. doi: 10.3390/ijms22115984.
5
The Role of Metal Oxide Nanoparticles, , and on Small Intestinal Enzyme Activity.
Environ Sci Nano. 2020 Dec 1;7(12):3940-3964. doi: 10.1039/d0en01001d. Epub 2020 Nov 9.
7
A quick accelerating microwave-assisted sustainable technique: permutated spiro-casing for imaging experiment.
Mol Divers. 2020 Feb;24(1):93-106. doi: 10.1007/s11030-019-09934-7. Epub 2019 Mar 6.
8
Imbalance in Protein Thiol Redox Regulation and Cancer-Preventive Efficacy of Selenium.
React Oxyg Species (Apex). 2016;2(4):272-289. doi: 10.20455/ros.2016.851. Epub 2016 May 25.
9
Selenium supplementation prevents metabolic and transcriptomic responses to cadmium in mouse lung.
Biochim Biophys Acta Gen Subj. 2018 Nov;1862(11):2417-2426. doi: 10.1016/j.bbagen.2018.04.009. Epub 2018 Apr 12.
10
Zinc in Cellular Regulation: The Nature and Significance of "Zinc Signals".
Int J Mol Sci. 2017 Oct 31;18(11):2285. doi: 10.3390/ijms18112285.

本文引用的文献

1
REACTIONS OF SELENO- AND SULFOAMINO ACIDS WITH HYDROPEROXIDES.
Biochemistry. 1964 Nov;3:1643-7. doi: 10.1021/bi00899a007.
2
Inhibitory sites in enzymes: zinc removal and reactivation by thionein.
Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):1936-40. doi: 10.1073/pnas.96.5.1936.
3
Synthesis and excretion profile of 1,4-[14C]phenylenebis(methylene)selenocyanate in the rat.
Carcinogenesis. 1998 Sep;19(9):1603-7. doi: 10.1093/carcin/19.9.1603.
4
Ebselen, a selenium-containing redox drug, releases zinc from metallothionein.
Biochem Biophys Res Commun. 1998 Jul 30;248(3):569-73. doi: 10.1006/bbrc.1998.9026.
5
Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution.
Nat Struct Biol. 1998 May;5(5):400-6. doi: 10.1038/nsb0598-400.
6
Control of zinc transfer between thionein, metallothionein, and zinc proteins.
Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3489-94. doi: 10.1073/pnas.95.7.3489.
7
Thiolate ligands in metallothionein confer redox activity on zinc clusters.
Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3478-82. doi: 10.1073/pnas.95.7.3478.
8
Selenium and the thioredoxin and glutaredoxin systems.
Biomed Environ Sci. 1997 Sep;10(2-3):271-9.
10
New agents for cancer chemoprevention.
J Cell Biochem Suppl. 1996;26:1-28. doi: 10.1002/jcb.240630703.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验