Lühring H
Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
J Membr Biol. 1999 Mar 1;168(1):47-61. doi: 10.1007/s002329900497.
The most frequently observed K+ channel in the tonoplast of Characean giant internodal cells with a large conductance (ca. 170 pS; Lühring, 1986; Laver & Walker, 1987) behaves, although inwardly rectifying, like animal maxi-K channels. This channel is accessible for patch-clamp techniques by preparation of cytoplasmic droplets, where the tonoplast forms the membrane delineating the droplet. Lowering the pH of the bathing solution, that virtually mimics the vacuolar environment, from an almost neutral level to values below pH 7, induced a significant but reversible decrease in channel activity, whereas channel conductance remained largely unaffected. Acidification (pH 5) on both sides of the membrane decreased open probability from a maximum of 80% to less than 20%. Decreasing pH at the cytosolic side inhibited channel activity cooperatively with a slope of 2.05 and a pKa 6.56. In addition, low pH at the vacuolar face shifted the activating voltage into a positive direction by almost 100 mV. This is the first report about an effect of extraplasmatic pH on gating of a maxi-K channel. It is suggested that the Chara maxi-K channel possesses an S4-like voltage sensor and negatively charged residues in neighboring transmembrane domains whose S4-stabilizing function may be altered by protonation. It was previously shown that gating kinetics of this channel respond to cytosolic Ca2+ (Laver & Walker, 1991). With regard to natural conditions, pH effects are discussed as contributing mainly to channel regulation at the vacuolar membrane face, whereas at the cytosolic side Ca2+ affects the channel. An attempt was made to ascribe structural mechanisms to different states of a presumptive gating reaction scheme.
在轮藻巨型节间细胞的液泡膜中,最常观察到的钾离子通道具有较大的电导(约170皮秒;吕林,1986年;拉弗和沃克,1987年),尽管它是内向整流的,但行为方式类似于动物的大电导钾通道。通过制备细胞质液滴,该通道可用于膜片钳技术,在这种情况下,液泡膜形成界定液滴的膜。将几乎模拟液泡环境的浴液pH从接近中性水平降低到pH 7以下的值,会导致通道活性显著但可逆地降低,而通道电导基本不受影响。膜两侧酸化(pH 5)会使开放概率从最大80%降至不到20%。胞质侧pH降低会协同抑制通道活性,斜率为2.05,pKa为6.56。此外,液泡侧低pH会使激活电压正向移动近100毫伏。这是关于胞外pH对大电导钾通道门控作用的首次报道。有人提出,轮藻大电导钾通道具有类似S4的电压传感器以及相邻跨膜结构域中的带负电残基,其稳定S4的功能可能会因质子化而改变。此前已表明,该通道的门控动力学对胞质Ca2+有响应(拉弗和沃克,1991年)。就自然条件而言,讨论了pH效应主要有助于液泡膜表面的通道调节,而在胞质侧Ca2+影响通道。人们试图将结构机制归因于假定的门控反应方案的不同状态。