Suppr超能文献

Neurotrophic factors modulate hair cells and their potassium currents in chick otocyst explants.

作者信息

Sokolowski B H, Csus J, Hafez O I, Haggerty H S

机构信息

University of South Florida, Department of Otolaryngology-Head and Neck Surgery, Tampa 33612, USA.

出版信息

Eur J Neurosci. 1999 Feb;11(2):682-90. doi: 10.1046/j.1460-9568.1999.00469.x.

Abstract

Neurotrophins, retinoids and their receptors are present in the sensory epithelia of the inner ear during development. We show that these factors modulate the proliferation of hair cells and their K+-currents when the embryonic day 3 (ED 3) presumptive inner ear (i.e. otocyst) is maintained in organ culture. All trans-retinoic acid (RA) increases hair cell differentiation and enhances the acquisition of outward currents, including a delayed rectifier and a fast activating, transient type, voltage-gated potassium current. In contrast, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) decrease ionic current activity, and the addition of RA with the neurotrophins enhances this inhibitory response in an age-dependent manner. We measured the total number of cells per explant over time to determine precisely when and how these factors inhibit explant growth. We found that high concentrations of BDNF and NT-3 administered together, and low concentrations of both neurotrophins combined and administered with RA suppress otocyst cell numbers after 24 h in vitro. This suppressive response is induced by RA and NT-3, not by RA and BDNF. The suppressive or inhibitory influence of NT-3 and RA is the result of NT-3 binding to the low affinity receptor, p75NTR, not the result of RA increasing mRNA levels for the high affinity receptor, trkC. However, trk may act with p75NTR, as disruption of trk signalling alleviates the inhibitory response induced by NT-3 and RA. Our data suggest that various combinations and/or concentration gradients of these factors can differentially regulate inner ear development and hair cell excitability.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验