Suppr超能文献

Universal distribution of saliencies for pruning in layered neural networks.

作者信息

Gorodkin J, Hansen L K, Lautrup B, Solla S A

机构信息

CONNECT, The Niels Bohr Institute, Copenhagen, Denmark.

出版信息

Int J Neural Syst. 1997 Oct-Dec;8(5-6):489-98. doi: 10.1142/s0129065797000471.

Abstract

A better understanding of pruning methods based on a ranking of weights according to their saliency in a trained network requires further information on the statistical properties of such saliencies. We focus on two-layer networks with either a linear or nonlinear output unit, and obtain analytic expressions for the distribution of saliencies and their logarithms. Our results reveal unexpected universal properties of the log-saliency distribution and suggest a novel algorithm for saliency-based weight ranking that avoids the numerical cost of second derivative evaluations.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验