Kawashima-Ohya Y, Kuruta Y, Yan W, Kawamoto T, Noshiro M, Kato Y
Department of Biochemistry, Hiroshima University School of Dentistry, Japan.
Endocrinology. 1999 Mar;140(3):1075-81. doi: 10.1210/endo.140.3.6564.
PTH and dibutyryl cAMP [(Bu)2cAMP] induced the expression of a 19-kDa protein in the conditioned media of rabbit growth plate chondrocyte cultures. The 19-kDa protein was identified as plasma retinol-binding protein (RBP) by aminoterminal sequence analysis and immunoblot analysis with an anti-RBP monoclonal antibody. Northern blot analysis showed that PTH, PTH-related peptide (PTHrP), and (Bu)2cAMP increased the RBP messenger RNA (mRNA) level in chondrocyte cultures. Further, both PTH and (Bu)2cAMP markedly induced the expression of RBP mRNA by about 10-fold at 3 h and by about 40-fold at 24 h, indicating a pretranslational regulation. The level of the mRNA expression induced by PTH, PTHrP, and (Bu)2cAMP was as high as that by retinoic acid (RA), known as a potent inducer of RBP in hepatoma cells. RBP mRNA was also detected in cartilage tissues at higher levels than in the other tissues examined except liver. Both RBP and PTH/PTHrP inhibited the dedifferentiative activity of RA on growth plate chondrocytes when added to the culture medium. These results demonstrate that chondrocytes synthesize and secrete RBP in vivo and in vitro and suggest that PTH/PTHrP modulates the effect of RA by means of RBP production in chondrocytes.