Suppr超能文献

Regional electrophysiological effects of hypokalaemia, hypomagnesaemia and hyponatraemia in isolated rabbit hearts in normal and ischaemic conditions.

作者信息

Wolk R, Kane K A, Cobbe S M, Hicks M N

机构信息

Department of Medical Cardiology, Royal Infirmary, Glasgow, UK.

出版信息

Cardiovasc Res. 1998 Dec;40(3):492-501. doi: 10.1016/s0008-6363(98)00200-4.

Abstract

OBJECTIVE

The aims of this study were to establish an isolated working heart model for electrophysiological recordings from the epicardium and endocardium and to examine regional effects of changes in ion concentrations in normal and ischaemic conditions.

METHODS

Monophasic action potential duration (MAPD90), effective refractory period (ERP) and conduction delay were measured simultaneously in the epicardium and endocardium of rabbit hearts paced at 3.3 Hz, subjected to 30 min of regional ischaemia and 15 min of reperfusion. The hearts were exposed before and throughout ischaemia and reperfusion to hypokalaemia (K+ = 2 mM), hypomagnesaemia (Mg2+ = 0.5 mM) or hyponatraemia (Na+ = 110 mM).

RESULTS

In the control hearts, no regional electrophysiological differences were seen before ischaemia, but ischaemia-induced MAPD90 shortening and postrepolarisation refractoriness were greater in the epicardium than in the endocardium and conduction delay increased only in the epicardium. Hypokalaemia shortened ERP in the epicardium (but not endocardium) and increased conduction delay in all areas before ischaemia, but it had no effects during ischaemia. During reperfusion hypokalaemia increased the incidence of recurrent tachyarrhythmias. Hypomagnesaemia had no effect before ischaemia, increased epicardial (but not endocardial) MAPD90 shortening during ischaemia, although it had no pro-arrhythmic action. Hyponatraemia increased conduction delay in all areas before ischaemia and produced asystole or severe bradycardia in all hearts. During ischaemia, hyponatraemia decreased ERP shortening and inducibility of arrhythmias in the epicardium (but not endocardium).

CONCLUSIONS

We conclude that the more pronounced effect of ischaemia upon the epicardium than the endocardium can be explained by the contact of the endocardium with intracavitary perfusate. We also conclude that changes in ion concentrations may have differential regional electrical effects in normal or ischaemic conditions.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验