Liuzzi F J, Scoville S A, Bufton S M
Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia, 23501, USA.
Exp Neurol. 1999 Feb;155(2):260-7. doi: 10.1006/exnr.1998.6999.
Estrogen status has profound effects on cutaneous sensitivity in adult female rats. The presence of alpha-estrogen receptor mRNA and protein in NGF-dependent, adult female rat dorsal root ganglion (DRG) neurons raises the possibility that estrogen modulates cutaneous sensation by acting directly on primary afferent neurons, perhaps by altering their sensitivity to NGF. The present study examined the effect of long-term (90 days) daily injections of an estrogen preparation, Premarin (Wyeth-Ayerst, Radnor, PA), to ovariectomized adult rats on lumbar DRG high-affinity NGF receptor, trkA, mRNA levels, and on beta-preprotachykinin (beta-PPT) mRNA levels, which have been shown to be regulated by NGF. Two doses were used in the experiments, the higher dose being 10 times that of the lower dose. Such injections had an effect opposite that reported for short-term, acute estrogen treatment on DRG trkA mRNA levels. The current data show that long-term daily estrogen treatment decreases trkA mRNA levels by 36%. After 90 days of estrogen treatment, no dose effect was evident. Moreover, as would be expected if beta-PPT gene expression is regulated by NGF through the trkA receptor, long-term estrogen treatment decreased DRG neuronal beta-PPT mRNA levels by about 30%. As with trkA, there was no dose effect evident after 90 days of estrogen treatment. These data suggest the possibility that estrogen modulates DRG neuropeptide gene expression and, perhaps, cutaneous sensitivity by regulating NGF receptor gene expression.