Suppr超能文献

Inhibition of DNA supercoiling-dependent transcriptional activation by a distant B-DNA to Z-DNA transition.

作者信息

Sheridan S D, Benham C J, Hatfield G W

机构信息

Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, California 92697, USA.

出版信息

J Biol Chem. 1999 Mar 19;274(12):8169-74. doi: 10.1074/jbc.274.12.8169.

Abstract

Negative DNA superhelicity can destabilize the local B-form DNA structure and can drive transitions to other conformations at susceptible sites. In a molecule containing multiple susceptible sites, superhelicity can couple these alternatives together, causing them to compete. In principle, these superhelically driven local structural transitions can be either facilitated or inhibited by proteins that bind at or near potential transition sites. If a DNA region that is susceptible to forming a superhelically induced alternate structure is stabilized in the B-form by a DNA-binding protein, its propensity for transition will be transferred to other sites within the same domain. If one of these secondary sites is in a promoter region, this transfer could facilitate open complex formation and thereby activate gene expression. We previously proposed that a supercoiling-dependent, DNA structural transmission mechanism of this type is responsible for the integration host factor-mediated activation of transcription from the ilvPG promoter of Escherichia coli (Sheridan, S. D., Benham, C. J. & Hatfield, G. W. (1998) J. Biol. Chem. 273, 21298-21308). In this report we confirm the validity of this mechanism by demonstrating the ability of a distant Z-DNA-forming site to compete with the superhelical destabilization that is required for integration host factor-mediated transcriptional activation, and thereby delay its occurrence.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验