Chan E, Ulfendahl M
Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
Hear Res. 1999 Feb;128(1-2):166-74. doi: 10.1016/s0378-5955(98)00207-x.
Outer hair cells isolated from the mammalian hearing organ have been shown to respond to mechanical stimuli at acoustic frequencies by expressing a change in cell length (e.g. Canlon et al., 1988). The acoustically evoked response is characterised by both a tonic length change following the envelope of the stimulus, and a frequency-dependent phasic component. We show here that mechanical stimulation at much lower frequencies directed at the cell body also elicits length changes of the outer hair cells. When the apical pole of isolated outer hair cells was compressed with a quartz fibre, a shortening or contraction at the basal pole was observed. Transverse indentation at the lateral membrane elicited shortenings at both ends of the cells. The sensitivity to the mechanical manipulation was changed by an altered tonicity of the external solution, or exposure to salicylate. As the response occurs at very low stimulus frequencies, it may account for the mechanism by which the hearing organ responds to the low frequency modulation component in complex signals like speech.