Suppr超能文献

听觉器官中声音诱发的径向应变。

Sound-evoked radial strain in the hearing organ.

作者信息

Tomo Igor, Boutet de Monvel Jacques, Fridberger Anders

机构信息

Karolinska Institutet, Center for Hearing and Communication Research, Department of Clinical Neuroscience, M1, Karolinska University Hospital, SE-171 76 Stockholm, Sweden.

出版信息

Biophys J. 2007 Nov 1;93(9):3279-84. doi: 10.1529/biophysj.107.105072. Epub 2007 Jun 29.

Abstract

The hearing organ contains sensory hair cells, which convert sound-evoked vibration into action potentials in the auditory nerve. This process is greatly enhanced by molecular motors that reside within the outer hair cells, but the performance also depends on passive mechanical properties, such as the stiffness, mass, and friction of the structures within the organ of Corti. We used resampled confocal imaging to study the mechanical properties of the low-frequency regions of the cochlea. The data allowed us to estimate an important mechanical parameter, the radial strain, which was found to be 0.1% near the inner hair cells and 0.3% near the third row of outer hair cells during moderate-level sound stimulation. The strain was caused by differences in the motion trajectories of inner and outer hair cells. Motion perpendicular to the reticular lamina was greater at the outer hair cells, but inner hair cells showed greater radial vibration. These differences led to deformation of the reticular lamina, which connects the apex of the outer and inner hair cells. These results are important for understanding how the molecular motors of the outer hair cells can so profoundly affect auditory sensitivity.

摘要

听觉器官包含感觉毛细胞,其将声音诱发的振动转化为听神经中的动作电位。外毛细胞内的分子马达极大地增强了这一过程,但其性能也取决于被动机械特性,如柯蒂氏器内结构的刚度、质量和摩擦力。我们使用重采样共聚焦成像来研究耳蜗低频区域的机械特性。这些数据使我们能够估计一个重要的机械参数——径向应变,发现在中等强度声音刺激期间,内毛细胞附近的径向应变为0.1%,外毛细胞第三排附近为0.3%。这种应变是由内毛细胞和外毛细胞运动轨迹的差异引起的。垂直于网状板的运动在外毛细胞处更大,但内毛细胞表现出更大的径向振动。这些差异导致连接外毛细胞和内毛细胞顶端的网状板变形。这些结果对于理解外毛细胞的分子马达如何能如此深刻地影响听觉敏感性很重要。

相似文献

1
Sound-evoked radial strain in the hearing organ.
Biophys J. 2007 Nov 1;93(9):3279-84. doi: 10.1529/biophysj.107.105072. Epub 2007 Jun 29.
2
Static length changes of cochlear outer hair cells can tune low-frequency hearing.
PLoS Comput Biol. 2018 Jan 19;14(1):e1005936. doi: 10.1371/journal.pcbi.1005936. eCollection 2018 Jan.
3
Filtering of acoustic signals within the hearing organ.
J Neurosci. 2014 Jul 2;34(27):9051-8. doi: 10.1523/JNEUROSCI.0722-14.2014.
4
Sound-induced differential motion within the hearing organ.
Nat Neurosci. 2003 May;6(5):446-8. doi: 10.1038/nn1047.
5
Minimal basilar membrane motion in low-frequency hearing.
Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):E4304-10. doi: 10.1073/pnas.1606317113. Epub 2016 Jul 12.
6
Reticular lamina vibrations in the apical turn of a living guinea pig cochlea.
Hear Res. 1999 Jun;132(1-2):15-33. doi: 10.1016/s0378-5955(99)00027-1.
8
Vibration pattern of the organ of Corti up to 50 kHz: evidence for resonant electromechanical force.
Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17652-7. doi: 10.1073/pnas.0408232101. Epub 2004 Dec 10.
9
Internal shearing within the hearing organ evoked by basilar membrane motion.
J Neurosci. 2002 Nov 15;22(22):9850-7. doi: 10.1523/JNEUROSCI.22-22-09850.2002.
10
Three-dimensional motion of the organ of Corti.
Biophys J. 2000 May;78(5):2285-97. doi: 10.1016/S0006-3495(00)76775-0.

引用本文的文献

1
Inner hair cell stereocilia are embedded in the tectorial membrane.
Nat Commun. 2021 May 10;12(1):2604. doi: 10.1038/s41467-021-22870-1.
2
Early Alterations of Endothelial Nitric Oxide Synthase Expression Patterns in the Guinea Pig Cochlea After Noise Exposure.
J Histochem Cytochem. 2019 Nov;67(11):845-855. doi: 10.1369/0022155419876644. Epub 2019 Sep 11.
3
Filtering of acoustic signals within the hearing organ.
J Neurosci. 2014 Jul 2;34(27):9051-8. doi: 10.1523/JNEUROSCI.0722-14.2014.
4
Tricellulin deficiency affects tight junction architecture and cochlear hair cells.
J Clin Invest. 2013 Sep;123(9):4036-49. doi: 10.1172/JCI69031. Epub 2013 Aug 27.
5
Sound-induced length changes in outer hair cell stereocilia.
Nat Commun. 2012;3:1094. doi: 10.1038/ncomms2100.
6
Instrumentation for studies of cochlear mechanics: from von Békésy forward.
Hear Res. 2012 Nov;293(1-2):3-11. doi: 10.1016/j.heares.2012.08.009. Epub 2012 Sep 10.
7
In vivo outer hair cell length changes expose the active process in the cochlea.
PLoS One. 2012;7(4):e32757. doi: 10.1371/journal.pone.0032757. Epub 2012 Apr 9.
8
The endocochlear potential alters cochlear micromechanics.
Biophys J. 2011 Jun 8;100(11):2586-94. doi: 10.1016/j.bpj.2011.05.002.
9
A differentially amplified motion in the ear for near-threshold sound detection.
Nat Neurosci. 2011 Jun;14(6):770-4. doi: 10.1038/nn.2827. Epub 2011 May 22.
10
Biophysical mechanisms underlying outer hair cell loss associated with a shortened tectorial membrane.
J Assoc Res Otolaryngol. 2011 Oct;12(5):577-94. doi: 10.1007/s10162-011-0269-0. Epub 2011 May 13.

本文引用的文献

2
Control of mammalian cochlear amplification by chloride anions.
J Neurosci. 2006 Apr 12;26(15):3992-8. doi: 10.1523/JNEUROSCI.4548-05.2006.
3
Cochlea's graded curvature effect on low frequency waves.
Phys Rev Lett. 2006 Mar 3;96(8):088701. doi: 10.1103/PhysRevLett.96.088701. Epub 2006 Mar 2.
4
Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells.
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2120-5. doi: 10.1073/pnas.0511125103. Epub 2006 Feb 6.
5
Imaging hair cell transduction at the speed of sound: dynamic behavior of mammalian stereocilia.
Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1918-23. doi: 10.1073/pnas.0507231103. Epub 2006 Jan 30.
6
Mechanical responses of the organ of corti to acoustic and electrical stimulation in vitro.
Biophys J. 2005 Dec;89(6):4382-95. doi: 10.1529/biophysj.105.070474. Epub 2005 Sep 16.
7
Motility-associated hair-bundle motion in mammalian outer hair cells.
Nat Neurosci. 2005 Aug;8(8):1028-34. doi: 10.1038/nn1509. Epub 2005 Jul 24.
8
Force generation by mammalian hair bundles supports a role in cochlear amplification.
Nature. 2005 Feb 24;433(7028):880-3. doi: 10.1038/nature03367. Epub 2005 Feb 6.
9
Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro.
Nat Neurosci. 2005 Feb;8(2):149-55. doi: 10.1038/nn1385. Epub 2005 Jan 9.
10
Vibration pattern of the organ of Corti up to 50 kHz: evidence for resonant electromechanical force.
Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17652-7. doi: 10.1073/pnas.0408232101. Epub 2004 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验