Suppr超能文献

一氧化氮对清醒兔心脏蛋白激酶C的亚型选择性激活:一氧化氮诱导及缺血诱导预处理的信号传导机制

Isoform-selective activation of protein kinase C by nitric oxide in the heart of conscious rabbits: a signaling mechanism for both nitric oxide-induced and ischemia-induced preconditioning.

作者信息

Ping P, Takano H, Zhang J, Tang X L, Qiu Y, Li R C, Banerjee S, Dawn B, Balafonova Z, Bolli R

机构信息

Experimental Research Laboratory, Division of Cardiology, and the Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40202, USA.

出版信息

Circ Res. 1999 Mar 19;84(5):587-604. doi: 10.1161/01.res.84.5.587.

Abstract

Although isoform-selective translocation of protein kinase C (PKC) epsilon appears to play an important role in the late phase of ischemic preconditioning (PC), the mechanism(s) responsible for such translocation remains unclear. Furthermore, the signaling pathway that leads to the development of late PC after exogenous administration of NO in the absence of ischemia (NO donor-induced late PC) is unknown. In the present study we tested the hypothesis that NO activates PKC and that this is the mechanism for the development of both ischemia-induced and NO donor-induced late PC. A total of 95 chronically instrumented, conscious rabbits were used. In rabbits subjected to ischemic PC (six 4-minute occlusion/4-minute reperfusion cycles), administration of the NO synthase inhibitor Nomega-nitro-L-arginine (group III), at doses previously shown to block the development of late PC, completely blocked the ischemic PC-induced translocation of PKCepsilon but not of PKCeta, indicating that increased formation of NO is an essential mechanism whereby brief ischemia activates the epsilon isoform of PKC. Conversely, a translocation of PKCepsilon and -eta quantitatively similar to that induced by ischemic PC could be reproduced pharmacologically with the administration of 2 structurally unrelated NO donors, diethylenetriamine/NO (DETA/NO) and S-nitroso-N-acetylpenicillamine (SNAP), at doses previously shown to elicit a late PC effect. The particulate fraction of PKCepsilon increased from 35+/-2% of total in the control group (group I) to 60+/-1% after ischemic PC (group II) (P<0.05), to 54+/-2% after SNAP (group IV) (P<0.05) and to 52+/-2% after DETA/NO (group V) (P<0.05). The particulate fraction of PKCeta rose from 66+/-5% in the control group to 86+/-3% after ischemic PC (P<0.05), to 88+/-2% after SNAP (P<0.05) and to 85+/-1% after DETA/NO (P<0.05). Neither ischemic PC nor NO donors had any appreciable effect on the subcellular distribution of PKCalpha, -beta1, -beta2, -gamma, -delta, - micro, or -iota/lambda; on total PKC activity; or on the subcellular distribution of total PKC activity. Thus, the effects of SNAP and DETA/NO on PKC closely resembled those of ischemic PC. The DETA/NO-induced translocation of PKCepsilon (but not that of PKCeta) was completely prevented by the administration of the PKC inhibitor chelerythrine at a dose of 5 mg/kg (group VI) (particulate fraction of PKCepsilon, 38+/-4% of total, P<0.05 versus group V; particulate fraction of PKCeta, 79+/-2% of total). The same dose of chelerythrine completely prevented the DETA/NO-induced late PC effect against both myocardial stunning (groups VII through X) and myocardial infarction (groups XI through XV), indicating that NO donors induce late PC by activating PKC and that among the 10 isozymes of PKC expressed in the rabbit heart, the epsilon isotype is specifically involved in the development of this form of pharmacological PC. In all groups examined (groups I through VI), the changes in the subcellular distribution of PKCepsilon protein were associated with parallel changes in PKCepsilon isoform-selective activity, whereas total PKC activity was not significantly altered. Taken together, the results provide direct evidence that isoform-selective activation of PKCepsilon is a critical step in the signaling pathway whereby NO initiates the development of a late PC effect both after an ischemic stimulus (endogenous NO) and after treatment with NO-releasing agents (exogenous NO). To our knowledge, this is also the first report that NO can activate PKC in the heart. The finding that NO can promote isoform-specific activation of PKC identifies a new biological function of this radical and a new mechanism in the signaling cascade of ischemic PC and may also have important implications for other pathophysiological conditions in which NO is involved and for nitrate therapy.

摘要

尽管蛋白激酶C(PKC)ε亚型的选择性易位似乎在缺血预处理(PC)的后期发挥重要作用,但导致这种易位的机制仍不清楚。此外,在无缺血情况下外源性给予NO(NO供体诱导的晚期PC)后导致晚期PC发生的信号通路尚不清楚。在本研究中,我们检验了以下假设:NO激活PKC,且这是缺血诱导和NO供体诱导的晚期PC发生的机制。总共使用了95只长期植入仪器的清醒家兔。在接受缺血性PC(六个4分钟阻断/4分钟再灌注周期)的家兔中,给予NO合酶抑制剂Nω-硝基-L-精氨酸(III组),其剂量先前已证明可阻断晚期PC的发生,该抑制剂完全阻断了缺血性PC诱导的PKCε易位,但未阻断PKCη的易位,表明NO生成增加是短暂缺血激活PKCε亚型的重要机制。相反,给予两种结构不相关的NO供体二乙烯三胺/NO(DETA/NO)和S-亚硝基-N-乙酰青霉胺(SNAP),其剂量先前已证明可引发晚期PC效应,可在药理学上重现与缺血性PC诱导的PKCε和PKCη易位在数量上相似的情况。PKCε的颗粒部分在对照组(I组)中占总量的35±2%,缺血性PC后(II组)增加到60±1%(P<0.05),SNAP后(IV组)增加到54±2%(P<0.05),DETA/NO后(V组)增加到52±2%(P<0.05)。PKCη的颗粒部分从对照组的66±5%增加到缺血性PC后的86±3%(P<0.05),SNAP后增加到88±2%(P<0.05),DETA/NO后增加到85±1%(P<0.05)。缺血性PC和NO供体对PKCα、-β1、-β2、-γ、-δ、-微、或-ι/λ的亚细胞分布、总PKC活性或总PKC活性的亚细胞分布均无明显影响。因此,SNAP和DETA/NO对PKC的影响与缺血性PC的影响非常相似。给予5mg/kg剂量的PKC抑制剂白屈菜红碱可完全阻止DETA/NO诱导的PKCε易位(但不阻止PKCη易位)(VI组)(PKCε的颗粒部分占总量的38±4%,与V组相比P<0.05;PKCη的颗粒部分占总量的79±2%)。相同剂量的白屈菜红碱完全阻止了DETA/NO诱导的针对心肌顿抑(VII组至X组)和心肌梗死(XI组至XV组)的晚期PC效应,表明NO供体通过激活PKC诱导晚期PC,并且在兔心脏中表达的10种PKC同工酶中,ε亚型特别参与了这种药理学PC形式的发生。在所有检查的组(I组至VI组)中,PKCε蛋白亚细胞分布的变化与PKCε亚型选择性活性的平行变化相关,而总PKC活性没有显著改变。综上所述,结果提供了直接证据,表明PKCε的亚型选择性激活是信号通路中的关键步骤,通过该步骤,NO在缺血刺激(内源性NO)后和用NO释放剂治疗(外源性NO)后启动晚期PC效应的发生。据我们所知,这也是关于NO可在心脏中激活PKC的首次报道。NO可促进PKC亚型特异性激活的发现确定了这种自由基的一种新生物学功能以及缺血性PC信号级联中的一种新机制,并且可能对涉及NO的其他病理生理状况以及硝酸盐治疗也具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验