Nielsen T L, Rasmussen B B, Flinois J P, Beaune P, Brosen K
Department of Clinical Pharmacology, Institute of Medical Biology, Odense University, Denmark.
J Pharmacol Exp Ther. 1999 Apr;289(1):31-7.
The aim of this study was to evaluate the (3S)-3-hydroxylation and the N-oxidation of quinidine as biomarkers for cytochrome P-450 (CYP)3A4 activity in human liver microsome preparations. An HPLC method was developed to assay the metabolites (3S)-3-hydroxyquinidine (3-OH-Q) and quinidine N-oxide (Q-N-OX) formed during incubation with microsomes from human liver and from Saccharomyces cerevisiae strains expressing 10 human CYPs. 3-OH-Q formation complied with Michaelis-Menten kinetics (mean values of Vmax and Km: 74.4 nmol/mg/h and 74.2 microM, respectively). Q-N-OX formation followed two-site kinetics with mean values of Vmax, Km and Vmax/Km for the low affinity isozyme of 15.9 nmol/mg/h, 76.1 microM and 0.03 ml/mg/h, respectively. 3-OH-Q and Q-N-OX formations were potently inhibited by ketoconazole, itraconazole, and triacetyloleandomycin. Isozyme specific inhibitors of CYP1A2, -2C9, -2C19, -2D6, and -2E1 did not inhibit 3-OH-Q or Q-N-OX formation, with Ki values comparable with previously reported values. Statistically significant correlations were observed between CYP3A4 content and formations of 3-OH-Q and Q-N-OX in 12 human liver microsome preparations. Studies with yeast-expressed isozymes revealed that only CYP3A4 actively catalyzed the (3S)-3-hydroxylation. CYP3A4 was the most active enzyme in Q-N-OX formation, but CYP2C9 and 2E1 also catalyzed minor proportions of the N-oxidation. In conclusion, our studies demonstrate that only CYP3A4 is actively involved in the formation of 3-OH-Q. Hence, the (3S)-3-hydroxylation of quinidine is a specific probe for CYP3A4 activity in human liver microsome preparations, whereas the N-oxidation of quinidine is a somewhat less specific marker reaction for CYP3A4 activity, because the presence of a low affinity enzyme is demonstrated by different approaches.
本研究的目的是评估奎尼丁的(3S)-3-羟基化和N-氧化反应,将其作为人肝微粒体制剂中细胞色素P-450(CYP)3A4活性的生物标志物。开发了一种高效液相色谱法,用于测定在与人肝微粒体以及表达10种人CYP的酿酒酵母菌株的微粒体孵育过程中形成的代谢产物(3S)-3-羟基奎尼丁(3-OH-Q)和奎尼丁N-氧化物(Q-N-OX)。3-OH-Q的形成符合米氏动力学(Vmax和Km的平均值分别为74.4 nmol/mg/h和74.2 μM)。Q-N-OX的形成遵循双位点动力学,低亲和力同工酶的Vmax、Km和Vmax/Km的平均值分别为15.9 nmol/mg/h、76.1 μM和0.03 ml/mg/h。酮康唑、伊曲康唑和三乙酰竹桃霉素对3-OH-Q和Q-N-OX的形成有显著抑制作用。CYP1A2、-2C9、-2C19、-2D6和-2E1的同工酶特异性抑制剂不抑制3-OH-Q或Q-N-OX的形成,其Ki值与先前报道的值相当。在12份人肝微粒体制剂中,观察到CYP3A4含量与3-OH-Q和Q-N-OX的形成之间存在统计学上的显著相关性。对酵母表达的同工酶的研究表明,只有CYP3A4能积极催化(3S)-3-羟基化反应。CYP3A4是Q-N-OX形成中最活跃的酶,但CYP2C9和2E1也催化了少量的N-氧化反应。总之,我们的研究表明只有CYP3A4积极参与3-OH-Q的形成。因此,奎尼丁的(3S)-3-羟基化是人肝微粒体制剂中CYP3A4活性的特异性探针,而奎尼丁的N-氧化反应是CYP3A4活性的特异性稍低的标记反应,因为通过不同方法证明了存在一种低亲和力酶。