Almási J, Takács-Novák K, Kökösi J, Noszál B
Semmelweis University, Institute of Pharmaceutical Chemistry, Hõgyes Endre utca 9, H-1092, Budapest, Hungary.
Int J Pharm. 1999 Mar 25;180(1):1-11. doi: 10.1016/s0378-5173(98)00406-2.
The protonation macroconstants (log K) of 4(3H)-quinazolone (1) and two 2-methyl-4-oxo-3H-alkyl-quinazoline-3-carboxylic acid derivatives (2,3) were determined by pH-potentiometry. The acid-base chemistry of compounds 2 and 3, where proton-bindings take place in an overlapping fashion, was described in terms of protonation microconstants as well. Microspeciation was carried out by two means: UV-pH titration (selective, pH-dependent monitoring of the N1-binding site), and deductively (using a derivative compound as covalently fixed model of one of the protonation isomers). The microconstant values obtained by the two different methods are in agreement within 0.05 log K units. Microspeciation revealed remarkable differences between the two homologue compounds (2 and 3). The microconstant values show that insertion of a second methylene moiety into the aliphatic acid side-chain (1) increases the electron-density and most basicity parameters of both functional groups; (2) significantly modifies the extent of site-site interactions in the molecule; (3) opens new conformational preferences by N1 ring nitrogen-carboxylic group intramolecular hydrogen bond formation and (4) reverses the predominantly zwitterion-involved protonation pathway into a neutral form-involved pathway. These molecules exemplify that microconstant values allow the comparative prediction and quantitative evaluation of pharmacokinetic behaviour, and signify the fact that microspeciation is a powerful tool in the process of drug development.
通过pH电位滴定法测定了4(3H)-喹唑啉酮(1)以及两种2-甲基-4-氧代-3H-烷基喹唑啉-3-羧酸衍生物(2,3)的质子化宏观常数(log K)。对于化合物2和3,其中质子结合以重叠方式发生,其酸碱化学性质也根据质子化微观常数进行了描述。微观物种形成通过两种方法进行:紫外-pH滴定(对N1结合位点进行选择性的、依赖pH的监测),以及演绎法(使用一种衍生物作为其中一种质子化异构体的共价固定模型)。通过两种不同方法获得的微观常数在0.05 log K单位内一致。微观物种形成揭示了两种同系物化合物(2和3)之间的显著差异。微观常数表明,在脂肪族酸侧链(1)中插入第二个亚甲基部分会增加两个官能团的电子密度和大多数碱性参数;(2)显著改变分子中位点-位点相互作用的程度;(3)通过N1环氮-羧基分子内氢键的形成开启新的构象偏好,以及(4)将主要涉及两性离子的质子化途径转变为涉及中性形式的途径。这些分子例证了微观常数允许对药代动力学行为进行比较预测和定量评估,并且表明微观物种形成是药物开发过程中的一种强大工具。