Spijker S, Smit A B, Eipper B A, Malik A, Mains R E, Geraerts W P
Department of Molecular and Cellular Neurobiology, Graduate School Neurosciences Amsterdam, Research Institute Neurosciences Vrije Universiteit, 1081 HV Amsterdam, The Netherlands.
FASEB J. 1999 Apr;13(6):735-48. doi: 10.1096/fasebj.13.6.735.
Mechanisms underlying the specificity and efficiency of enzymes, which modify peptide messengers, especially with the variable requirements of synthesis in the neuronal secretory pathway, are poorly understood. Here, we examine the process of peptide alpha-amidation in individually identifiable Lymnaea neurons that synthesize multiple proproteins, yielding complex mixtures of structurally diverse peptide substrates. The alpha-amidation of these peptide substrates is efficiently controlled by a multifunctional Lymnaea peptidyl glycine alpha-amidating monooxygenase (LPAM), which contains four different copies of the rate-limiting Lymnaea peptidyl glycine alpha-hydroxylating monooxygenase (LPHM) and a single Lymnaea peptidyl alpha-hydroxyglycine alpha-amidating lyase. Endogenously, this zymogen is converted to yield a mixture of monofunctional isoenzymes. In vitro, each LPHM displays a unique combination of substrate affinity and reaction velocity, depending on the penultimate residue of the substrate. This suggests that the different isoenzymes are generated in order to efficiently amidate the many peptide substrates that are present in molluscan neurons. The cellular expression of the LPAM gene is restricted to neurons that synthesize amidated peptides, which underscores the critical importance of regulation of peptide alpha-amidation.
对于修饰肽类信使的酶的特异性和效率背后的机制,尤其是考虑到神经元分泌途径中合成的可变需求,我们了解得还很少。在这里,我们研究了在可单独识别的椎实螺神经元中肽α-酰胺化的过程,这些神经元合成多种前体蛋白,产生结构多样的肽底物的复杂混合物。这些肽底物的α-酰胺化由一种多功能的椎实螺肽基甘氨酸α-酰胺化单加氧酶(LPAM)有效控制,该酶包含限速的椎实螺肽基甘氨酸α-羟化单加氧酶(LPHM)的四个不同拷贝和一个椎实螺肽基α-羟基甘氨酸α-酰胺化裂解酶。在体内,这种酶原被转化产生单功能同工酶的混合物。在体外,每种LPHM根据底物的倒数第二个残基表现出底物亲和力和反应速度的独特组合。这表明产生不同的同工酶是为了有效地酰胺化软体动物神经元中存在的许多肽底物。LPAM基因的细胞表达仅限于合成酰胺化肽的神经元,这突出了肽α-酰胺化调节的至关重要性。