Suppr超能文献

The use of fuzzy integrals and bispectral analysis of the electroencephalogram to predict movement under anesthesia.

作者信息

Muthuswamy J, Roy R J

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.

出版信息

IEEE Trans Biomed Eng. 1999 Mar;46(3):291-9. doi: 10.1109/10.748982.

Abstract

The objective of this study was to design and evaluate a methodology for estimating the depth of anesthesia in a canine model that integrates electroencephalogram (EEG)-derived autoregressive (AR) parameters, hemodynamic parameters, and the alveolar anesthetic concentration. Using a parameters, and the alveolar anesthetic concentration. Using a parametric approach, two separate AR models of order ten were derived for the EEG, one from the third-order cumulant sequence and the other from the autocorrelation lags of the EEG. Since the anesthetic dose versus depth of anesthesia curve is highly nonlinear, a neural network (NN) was chosen as the basic estimator and a multiple NN approach was conceived which took hemodynamic parameters, EEG derived parameters, and anesthetic concentration as input feature vectors. Since the estimation of the depth of anesthesia involves cognitive as well as statistical uncertainties, a fuzzy integral was used to integrate the individual estimates of the various networks and to arrive at the final estimate of the depth of anesthesia. Data from 11 experiments were used to train the NN's which were then tested on nine other experiments. The fuzzy integral of the individual NN estimates (when tested on 43 feature vectors from seven of the nine test experiments) classified 40 (93%) of them correctly, offering a substantial improvement over the individual NN estimates.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验