Misevic G N
Laboratoire de Chimie Biologique, Universite de Sciences et Technologies de Lille, UMR 111 de CNRS, France.
Microsc Res Tech. 1999 Feb 15;44(4):304-9. doi: 10.1002/(SICI)1097-0029(19990215)44:4<304::AID-JEMT9>3.0.CO;2-X.
During the emergence of multicellular organisms, molecular mechanisms evolved to allow maintenance of anatomical integrity and self-recognition. We propose that carbohydrates from proteoglycans, as the most peripheral cell surface, and matrix molecules might have provided these key adhesion and recognition functions. If so, the Porifera as the simplest metazoans alive today should retain, at least in part, proteoglycan adhesion and recognition mechanisms. Early work on cell adhesion of dissociated marine sponge cells provided important phenomenological evidence for cell sorting. Here is reviewed recent work on molecular mechanisms of cell recognition and adhesion mediated by cell surface proteoglycans purified from three marine sponge species, Microciona prolifera, Halichondria panicea, and Cliona celata. Biochemical characterization of isolated proteoglycans showed that each species expressed a unique type of primordial molecule named glyconectins. These proteoglycans displayed species-specific self-recognition and adhesion in color-coded bead, cell, and blotting assays. The specificity of homophilic proteoglycan to proteoglycan interactions in the Porifera approaches the binding selectivity of the evolutionarily advanced immunoglobulin superfamily system. Such xeno-selectivity may be a new paradigm for the molecular self-recognition, which was a fundamental requirement in the self/non-self discrimination during the emergence of multicellularity and further divergence of species. We have used atomic force microscopy (AFM) technology to directly measure intermolecular binding strength between individual pairs of ligand and receptor molecules in physiological solution. Homophilic glyconectin interactions were investigated by AFM after covalent attachment of the protein core to the sensor tip and to a flat surface, leaving the carbohydrates unmodified. AFM measurements of the binding strength between glyconectins indicated that one pair of molecules could theoretically hold the weight of 1,600 cells in physiological solution. These results provided the first essential and quantitative evidence that proteoglycan-proteoglycan binding can perform the adhesion function that we have assigned to it. Our investigations with purified proteoglycans from the marine sponge M. prolifera (glyconectin 1) using bead and cell adhesion assays have provided evidence that a new molecular mechanism of polyvalent and specific glycan-glycan binding between proteoglycans can mediate cell recognition and adhesion. Partial sequencing of the glycans has revealed two new cell adhesion carbohydrate structures: (3)GlcNAc(3OSO3)beta1-3Fuc and Pyr4,6Galbeta1-4GlcNAcbeta1-3Fuc.
在多细胞生物出现的过程中,分子机制不断进化,以维持解剖学完整性和自我识别。我们认为,蛋白聚糖中的碳水化合物作为最外层的细胞表面成分以及基质分子,可能提供了这些关键的黏附与识别功能。如果是这样,作为现存最简单后生动物的多孔动物应该至少部分保留了蛋白聚糖的黏附与识别机制。早期关于解离的海洋海绵细胞黏附的研究为细胞分选提供了重要的现象学证据。本文综述了从三种海洋海绵物种——增殖小海绵(Microciona prolifera)、扇形扁海绵(Halichondria panicea)和红凿贝海绵(Cliona celata)中纯化得到的细胞表面蛋白聚糖介导的细胞识别与黏附分子机制的最新研究。对分离出的蛋白聚糖进行生化特性分析表明,每个物种都表达一种名为糖连接蛋白的独特原始分子类型。这些蛋白聚糖在颜色编码的珠子、细胞和印迹分析中表现出物种特异性的自我识别和黏附。多孔动物中同嗜性蛋白聚糖与蛋白聚糖相互作用的特异性接近进化上更高级的免疫球蛋白超家族系统的结合选择性。这种异种选择性可能是分子自我识别的一种新范式,这是多细胞性出现及物种进一步分化过程中自我/非自我区分的基本要求。我们利用原子力显微镜(AFM)技术直接测量了生理溶液中单个配体和受体分子对之间的分子间结合强度。在将蛋白核心共价连接到传感器尖端和平坦表面后,通过AFM研究了同嗜性糖连接蛋白的相互作用,而碳水化合物未作修饰。对糖连接蛋白之间结合强度的AFM测量表明,在生理溶液中,一对分子理论上可以承受1600个细胞的重量。这些结果提供了首个重要的定量证据,证明蛋白聚糖 - 蛋白聚糖结合能够发挥我们赋予它的黏附功能。我们利用从海洋海绵增殖小海绵(糖连接蛋白1)中纯化得到的蛋白聚糖进行珠子和细胞黏附分析的研究表明,蛋白聚糖之间多价且特异性的聚糖 - 聚糖结合的新分子机制可以介导细胞识别和黏附。聚糖的部分测序揭示了两种新的细胞黏附碳水化合物结构:(3)GlcNAc(3OSO3)β1 - 3Fuc和Pyr4,6Galβ1 - 4GlcNAcβ1 - 3Fuc。