Suppr超能文献

组合文库的基因优化

Genetic optimization of combinatorial libraries.

作者信息

Gobbi A, Poppinger D

机构信息

Novartis Crop Protection AG, Agro Research Computing, R-1045.1.20, CH-4002 Basel, Switzerland.

出版信息

Biotechnol Bioeng. 1998 Winter;61(1):47-54. doi: 10.1002/(sici)1097-0290(199824)61:1<47::aid-bit9>3.0.co;2-z.

Abstract

Most agrochemical and pharmaceutical companies have set up high-throughput screening programs which require large numbers of compounds to screen. Combinatorial libraries provide an attractive way to deliver these compounds. A single combinatorial library with four variable positions can yield more than 10(12) potential compounds, if one assumes that about 1000 reagents are available for each position. This is far more than any high-throughput screening facility can afford to screen. We have proposed a method for iterative compound selection from large databases, which identifies the most active compounds by examining only a small fraction of the database. In this article, we describe the extension of this method to the problem of selecting compounds from large combinatorial libraries. Copyright 1998 John Wiley & Sons, Inc.

摘要

大多数农用化学品和制药公司都建立了高通量筛选项目,这些项目需要大量化合物进行筛选。组合文库为提供这些化合物提供了一种有吸引力的方式。如果假设每个位置大约有1000种试剂可用,那么一个具有四个可变位置的单一组合文库可以产生超过10的12次方种潜在化合物。这远远超过了任何高通量筛选设施能够负担得起筛选的数量。我们提出了一种从大型数据库中迭代选择化合物的方法,该方法仅通过检查数据库的一小部分来识别最具活性的化合物。在本文中,我们描述了将该方法扩展到从大型组合文库中选择化合物的问题。版权所有1998约翰威立父子公司。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验