Suppr超能文献

基于虚拟筛选和文本挖掘的植物复合物的计算机药物毒性和相互作用预测。

In-Silico Drug Toxicity and Interaction Prediction for Plant Complexes Based on Virtual Screening and Text Mining.

机构信息

School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.

Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518000, China.

出版信息

Int J Mol Sci. 2022 Sep 2;23(17):10056. doi: 10.3390/ijms231710056.

Abstract

Potential drug toxicities and drug interactions of redundant compounds of plant complexes may cause unexpected clinical responses or even severe adverse events. On the other hand, super-additivity of drug interactions between natural products and synthetic drugs may be utilized to gain better performance in disease management. Although without enough datasets for prediction model training, based on the SwissSimilarity and PubChem platforms, for the first time, a feasible workflow of prediction of both toxicity and drug interaction of plant complexes was built in this study. The optimal similarity score threshold for toxicity prediction of this system is 0.6171, based on an analysis of 20 different herbal medicines. From the PubChem database, 31 different sections of toxicity information such as "Acute Effects", "NIOSH Toxicity Data", "Interactions", "Hepatotoxicity", "Carcinogenicity", "Symptoms", and "Human Toxicity Values" sections have been retrieved, with dozens of active compounds predicted to exert potential toxicities. In Dunn (SSD), there are 9 out of 24 active compounds predicted to play synergistic effects on cancer management with various drugs or factors. The synergism between SSD, luteolin and docetaxel in the management of triple-negative breast cancer was proved by the combination index assay, synergy score detection assay, and xenograft model.

摘要

植物复合物冗余化合物的潜在药物毒性和药物相互作用可能导致意外的临床反应,甚至严重的不良事件。另一方面,天然产物和合成药物之间药物相互作用的超相加性可用于在疾病管理中获得更好的效果。尽管没有足够的数据集用于预测模型训练,但本研究首次基于 SwissSimilarity 和 PubChem 平台,为植物复合物的毒性和药物相互作用预测构建了一种可行的工作流程。该系统毒性预测的最佳相似性评分阈值为 0.6171,基于对 20 种不同草药的分析。从 PubChem 数据库中检索到 31 种不同的毒性信息部分,如“急性影响”、“NIOSH 毒性数据”、“相互作用”、“肝毒性”、“致癌性”、“症状”和“人体毒性值”部分,预测有数十种活性化合物具有潜在毒性。在 Dunn(SSD)中,有 9 种 24 种活性化合物被预测与各种药物或因素在癌症管理中具有协同作用。SSD、木犀草素和多西紫杉醇在三阴性乳腺癌管理中的协同作用通过组合指数测定、协同评分检测测定和异种移植模型得到了证实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d920/9456415/7c6143eaf814/ijms-23-10056-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验