Suppr超能文献

肺泡上皮细胞中的钠通道:分子特征、生物物理特性及生理意义

Sodium channels in alveolar epithelial cells: molecular characterization, biophysical properties, and physiological significance.

作者信息

Matalon S, O'Brodovich H

机构信息

Department of Anesthesiology, University of Alabama at Birmingham 35233, USA.

出版信息

Annu Rev Physiol. 1999;61:627-61. doi: 10.1146/annurev.physiol.61.1.627.

Abstract

At birth, fetal distal lung epithelial (FDLE) cells switch from active chloride secretion to active sodium (Na+) reabsorption. Sodium ions enter the FDLE and alveolar type II (ATII) cells mainly through apical nonselective cation and Na(+)-selective channels, with conductances of 4-26 pS (picoSiemens) in FDLE and 20-25 pS in ATII cells. All these channels are inhibited by amiloride with a 50% inhibitory concentration of < 1 microM, and some are also inhibited by [N-ethyl-N-isopropyl]-2'-4'-amiloride (50% inhibitory concentration of < 1 microM). Both FDLE and ATII cells contain the alpha-, beta-, and gamma-rENaC (rat epithelial Na+ channels) mRNAs; reconstitution of an ATII cell Na(+)-channel protein into lipid bilayers revealed the presence of 25-pS Na+ single channels, inhibited by amiloride and [N-ethyl-N-isopropyl]-2'-4'-amiloride. A variety of agents, including cAMP, oxygen, glucocorticoids, and in some cases Ca2+, increased the activity and/or rENaC mRNA levels. The phenotypic properties of these channels differ from those observed in other Na(+)-absorbing epithelia. Pharmacological blockade of alveolar Na+ transport in vivo, as well as experiments with newborn alpha-rENaC knock-out mice, demonstrate the importance of active Na+ transport in the reabsorption of fluid from the fetal lung and in reabsorbing alveolar fluid in the injured adult lung. Indeed, in a number of inflammatory diseases, increased production of reactive oxygen-nitrogen intermediates, such as peroxynitrite (ONOO-), may damage ATII and FDLE Na+ channels, decrease Na+ reabsorption in vivo, and thus contribute to the formation of alveolar edema.

摘要

出生时,胎儿远端肺上皮(FDLE)细胞从主动氯化物分泌转变为主动钠(Na+)重吸收。钠离子主要通过顶端非选择性阳离子通道和Na(+)-选择性通道进入FDLE细胞和II型肺泡(ATII)细胞,FDLE细胞中的电导为4 - 26皮西门子(pS),ATII细胞中的电导为20 - 25 pS。所有这些通道都被氨氯地平抑制,50%抑制浓度<1微摩尔,一些通道也被[N-乙基-N-异丙基]-2'-4'-氨氯地平抑制(50%抑制浓度<1微摩尔)。FDLE细胞和ATII细胞都含有α-、β-和γ-rENaC(大鼠上皮Na+通道)mRNA;将ATII细胞Na(+)-通道蛋白重组到脂质双分子层中显示存在25-pS的Na+单通道,被氨氯地平和[N-乙基-N-异丙基]-2'-4'-氨氯地平抑制。包括cAMP、氧气、糖皮质激素以及在某些情况下的Ca2+在内的多种因子会增加通道活性和/或rENaC mRNA水平。这些通道的表型特性与在其他Na(+)-吸收上皮中观察到的不同。体内肺泡Na+转运的药理学阻断以及对新生α-rENaC基因敲除小鼠的实验表明,主动Na+转运在胎儿肺液体重吸收以及受损成年肺肺泡液体重吸收中具有重要作用。事实上,在许多炎症性疾病中,活性氧-氮中间体如过氧亚硝酸盐(ONOO-)的产生增加,可能会损伤ATII和FDLE的Na+通道,降低体内Na+重吸收,从而导致肺泡水肿的形成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验