Suppr超能文献

Raf-1 causes growth suppression and alteration of neuroendocrine markers in DMS53 human small-cell lung cancer cells.

作者信息

Ravi R K, Thiagalingam A, Weber E, McMahon M, Nelkin B D, Mabry M

机构信息

Oncology Center, Johns Hopkins University Medical Institutions, Baltimore, Maryland, USA.

出版信息

Am J Respir Cell Mol Biol. 1999 Apr;20(4):543-9. doi: 10.1165/ajrcmb.20.4.3406.

Abstract

Ras mutations are common in lung adenocarcinomas and squamous-cell cancers, which are non-small-cell lung cancers (NSCLCs). However, small-cell lung cancers (SCLCs) rarely have ras mutations, suggesting that ras activation may not confer a growth advantage in these cells. In one SCLC cell line DMS53, activated ras expression induced increased neuroendocrine differentiation and decreased cell proliferation. We show here that DMS53 cells undergo differentiation and G1-specific growth arrest in response to ras/raf/ mitogen-activated protein kinase kinase (MEK)/mitogen-activated protein kinase (MAPK) pathway activation. To assess the consequences of activating the raf/MEK/MAPK pathway downstream of ras, we transfected a DMS53 cell line with DeltaRaf-1:ER, an activatable form of c-raf-1. DeltaRaf-1:ER activation suppressed cell proliferation and cloning on soft agar by 90% without evidence of apoptosis. Cell cycle analysis showed a reduced proportion of cells in S phase, and was associated with induction of the cyclin-dependent kinase (cdk) inhibitor p16(INK4). Expression of the cell cycle-specific proteins pRb, Rb2/p130, p107, cyclin A, cdc-2, and E2F-1 was decreased after DeltaRaf-1:ER activation in DMS53 cells. The activity cdk4 and cdk2 was also reduced, as consistent with cell cycle arrest in cells with activated DeltaRaf-1:ER cells. In addition, DeltaRaf-1:ER reduced the expression of neuroendocrine markers, gastrin releasing peptide, and ret gene in DMS53:DeltaRaf-1:ER cells. These results provide further evidence that activation of the raf/MEK/ MAPK signaling pathway, which is associated with transformation in many circumstances, can reduce the growth of SCLC cells, and suggest that activation of this pathway might be clinically efficacious in some settings.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验