Maeda T, Eller M S, Hedayati M, Grossman L, Gilchrest B A
Department of Dermatology, Boston University School of Medicine, MA 02118-2394, USA.
Mutat Res. 1999 Mar 10;433(2):137-45. doi: 10.1016/s0921-8777(98)00071-8.
The small DNA fragment thymidine dinucleotide (pTpT) stimulates photoprotective responses in mammalian cells and intact skin. These responses include increased melanogenesis (tanning) and enhanced repair of DNA damage induced by ultraviolet (UV) light. Here we show that pTpT treatment of human keratinocytes enhances their repair of DNA damaged by the chemical carcinogen benzo(a)pyrene (BP), as determined by increased expression of a transfected BP-damaged reporter plasmid containing the chloramphenicol acetyltransferase (CAT) gene. The pTpT-enhanced repair of this BP-damaged plasmid is accomplished at least in part through activation of the p53 tumor suppressor protein and transcription factor, because p53-null H1299 cells showed enhanced repair only if previously transfected with a p53-expression vector. To elucidate the mechanism of this enhanced DNA repair, we examined the expression of p21 and proliferating cell nuclear antigen (PCNA), proteins known to be regulated by p53, as well as the XPA protein, which is mutated in the inherited repair-deficient disorder xeroderma pigmentosum (XP) group A and is necessary for the recognition of UV-induced DNA photoproducts. The p53, PCNA and XPA proteins were all up-regulated within 48 h after the addition of pTpT. Taken together, these data demonstrate that pTpT-enhanced repair of DNA damaged by either UV irradiation or chemical mutagens can be achieved in human cells by exposure to small DNA fragments at least in part through the activation of p53 and increased expression of p53-regulated genes.