Schönherr R, Rosati B, Hehl S, Rao V G, Arcangeli A, Olivotto M, Heinemann S H, Wanke E
Department of General Physiology and Biochemistry, Laboratory of Electrophysiology, University of Milan, Milano, Italy.
Eur J Neurosci. 1999 Mar;11(3):753-60. doi: 10.1046/j.1460-9568.1999.00493.x.
ERG (ether-à-go-go-related gene) K+ channels are crucial in human heart physiology (h-ERG), but are also found in neuronal cells and are impaired in Drosophila 'seizure' mutants. Their biophysical properties include the relatively fast kinetics of the inactivation gate and much slower kinetics of the activation gate. In order to elucidate how the complex time- and voltage-dependent activation properties of ERG channels underlies distinct roles in excitability, we investigated different types of ERG channels intrinsically present in cells or heterologously expressed in mammalian cells or Xenopus oocytes. Voltage-dependent activation curves were highly dependent on the features of the eliciting protocols. Only very long preconditioning times produced true steady-state relationships, a fact that has been largely neglected in the past, hampering the comparison of published data on ERG channels. Beyond this technical aspect, the slow activation property of ERG can be responsible for unsuspected physiological roles. We found that around the midpoint of the activation curve, the time constant of ERG open-close kinetics is of the order of 10-15 s. During sustained trains of depolarizations, e.g. those produced in neuronal firing, this leads to the use-dependent accumulation of open-state ERG channels. Accumulation is not observed in a mutant with a fast activation gate. In conclusion, it is well established that other K+ channels (i.e. Ca2+-activated and M) control the spike-frequency adaptation, but our results support the notion that the purely voltage-dependent activation property of ERG channels would allow a slow inhibitory physiological role in rapid neuronal signalling.
醚 - 去极化相关基因(ERG)钾通道在人类心脏生理学(h - ERG)中至关重要,但在神经元细胞中也有发现,并且在果蝇“癫痫发作”突变体中功能受损。它们的生物物理特性包括失活门控相对较快的动力学以及激活门控慢得多的动力学。为了阐明ERG通道复杂的时间和电压依赖性激活特性如何在兴奋性中发挥不同作用,我们研究了细胞内固有存在的或在哺乳动物细胞或非洲爪蟾卵母细胞中异源表达的不同类型的ERG通道。电压依赖性激活曲线高度依赖于引发方案的特征。只有非常长的预处理时间才能产生真正的稳态关系,这一事实在过去很大程度上被忽视了,阻碍了已发表的关于ERG通道数据的比较。除了这个技术方面,ERG的缓慢激活特性可能导致未被怀疑的生理作用。我们发现,在激活曲线的中点附近,ERG开闭动力学的时间常数约为10 - 15秒。在持续的去极化串刺激期间,例如神经元放电时产生的刺激,这会导致开放状态的ERG通道出现使用依赖性积累。在具有快速激活门控的突变体中未观察到积累现象。总之,其他钾通道(即钙激活钾通道和M型钾通道)控制动作电位频率适应性这一点已得到充分证实,但我们的结果支持这样一种观点,即ERG通道纯粹的电压依赖性激活特性将在快速神经元信号传导中发挥缓慢的抑制性生理作用。