Suppr超能文献

Inhibition of in vitro calcium phosphate precipitation in presence of polyurethane via surface modification and drug delivery.

作者信息

Chandy T, Kumar B A, Sharma C P

机构信息

Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum, India.

出版信息

J Appl Biomater. 1994;5(3):245-54. doi: 10.1002/jab.770050310.

Abstract

Biomaterial associated calcification is the principal cause of the clinical failure of bioprosthetic implants. The present investigation describes the mineralization of polymeric substrate in an extracirculatory environment and the possible methods of prevention. Calcification was examined on various polyurethane films (and bioprosthetic tissue) incubated in metastable solutions of calcium phosphate and the role of polymer casting and precipitation was evaluated. The formulation and the in vitro efficacy of prolonged controlled-release chitosan matrices, containing the novel anticalcification agents, such as Fe +++ or protamine sulfate (PS), were also attempted. The in vitro release profiles of PS from chitosan beads was performed in a rotating shaker (100 rpm) in 0.1 M phosphate buffer (pH 7.4) and was monitored spectrophotometrically. The amount and percentage of drug release were much higher initially, which was controlled with the incorporation of egg phosphatidyl choline (EPC). The PS loaded chitosan beads (coincubated in calcium phosphate solution with the calcifiable polyurethane films) significantly inhibited biomaterial calcification (about 40-50% inhibition). Surface modification of polyurethanes with Fe +++ or PS also inhibited the calcification profile of the material. These findings suggest the possibility of a combination therapy for prevention of biomaterial associated calcification via surface modifications in conjunction with long-term controlled release of the anticalcifying drugs.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验