Woodruff S I
San Diego State University, USA.
Eval Rev. 1997 Dec;21(6):688-97. doi: 10.1177/0193841X9702100603.
When evaluating the effects of public health intervention, larger units, or clusters, of individuals are often the unit of randomization and implementation. Ignoring dependency in the data due to clustering can misrepresent intervention effects. Random-effects models (REMs) may be a useful way to analyze such data. The present study compares results of analyses of data from a nutrition intervention program using four different methods: (a) usual multiple regression analysis using individual subject data, (b) usual multiple regression analysis using the classroom cluster as the unit of analysis, (c) two-level REM model with subjects clustered within classrooms, and (d) two-level REM model with subjects clustered within sites.
在评估公共卫生干预措施的效果时,较大的个体单位或群组通常是随机化和实施的单位。由于聚类而忽略数据中的依赖性可能会误判干预效果。随机效应模型(REM)可能是分析此类数据的有用方法。本研究比较了使用四种不同方法对营养干预项目数据进行分析的结果:(a)使用个体受试者数据的常规多元回归分析;(b)以教室群组为分析单位的常规多元回归分析;(c)受试者在教室内聚类的二级随机效应模型;(d)受试者在地点内聚类的二级随机效应模型。