Suppr超能文献

Shear-Induced "Melting" of an Aqueous Foam.

作者信息

Gopal AD, Durian DJ

机构信息

UCLA Department of Physics and Astronomy, Los Angeles, California, 90095-1547

出版信息

J Colloid Interface Sci. 1999 May 1;213(1):169-178. doi: 10.1006/jcis.1999.6123.

Abstract

We present diffusing-wave spectroscopy measurements of bubble dynamics in a continuously sheared aqueous foam. At slow strain rates, isolated clusters of bubbles intermittently rearrange from one solidly packed configuration to another, even though the macroscopic flow appears continuous. At fast rates, bubbles instead move smoothly and continuously throughout the entire foam. In other words, shear flow that appears macroscopically laminar is similarly laminar down to the bubble scale; effectively the foam "melts." The crossover to this regime can be understood in terms of elastic energy accumulation and viscous dissipation mechanisms. In particular, the strain rate needed for shear-induced melting to occur is set by the ratio of a yield strain to the rearrangement event duration. To explore the implications for macroscopic flow, we compare these bubble-scale dynamics directly with viscosity measurements. Copyright 1999 Academic Press.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验