Leno M, Carter L, Venzon D J, Romano J, Markham P D, Limbach K, Tartaglia J, Paoletti E, Benson J, Franchini G, Robert-Guroff M
Basic Research Laboratory, National Cancer Institute, Bethesda, Maryland 20892-4255, USA.
AIDS Res Hum Retroviruses. 1999 Mar 20;15(5):461-70. doi: 10.1089/088922299311213.
Protection against intravenous simian immunodeficiency virus (SIV) challenge was assessed in rhesus macaques after immunization with a highly attenuated vaccinia (NYVAC)-SIV recombinant. One-third of vaccinated animals controlled viral infection and progressed to disease more slowly than control animals (Benson J, et al.: J Virol 1998;72:4170). However, this protection was not associated with neutralizing antibodies, cytotoxic T lymphocytes, or helper T cell responses. To explore other potential correlates of protection, we examined CD8+ T cell antiviral activity in macaques vaccinated with NYVAC-SIV, with or without added cytokine adjuvants, and in controls receiving only IL-12 or IL-12 plus IL-2. Before immunization, naive macaques exhibited a broad range of CD8+ T cell antiviral activity. Nevertheless, in the course of immunization, the vaccinated macaques as a group developed increased CD8+ T cell antiviral activity while the controls remained stable. Infectious SIV exposure also increased antiviral activity. Prechallenge antiviral activity levels of vaccinated macaques were not sufficient to prevent SIV transmission or control viral replication during acute infection. However, vaccinated animals consistently exhibited reduced viral loads postchallenge compared with controls. Moreover, high suppressive activity 8 weeks postchallenge, at which time the viremia set point was established, was significantly correlated with reduced viral load and slow disease progression. Prechallenge antiviral activity influenced this result, as decreased viremia and slow progressor status were more apparent in macaques with high suppressive activity both pre- and postchallenge. Our data demonstrate the impact of CD8+ antiviral activity on viral replication and disease progression, and suggest that vaccine designs able to elicit high levels of this activity will contribute significantly to protective efficacy.
在用高度减毒的痘苗病毒(NYVAC)-猴免疫缺陷病毒(SIV)重组体免疫恒河猴后,评估了其对静脉内注射SIV攻击的保护作用。三分之一的接种动物能够控制病毒感染,并且比对照动物更缓慢地发展为疾病(Benson J等人:《病毒学杂志》1998年;72:4170)。然而,这种保护作用与中和抗体、细胞毒性T淋巴细胞或辅助性T细胞反应无关。为了探索其他潜在的保护相关因素,我们检测了接种NYVAC-SIV的恒河猴(添加或不添加细胞因子佐剂)以及仅接受IL-12或IL-12加IL-2的对照恒河猴中CD8 + T细胞的抗病毒活性。在免疫前,未免疫的恒河猴表现出广泛的CD8 + T细胞抗病毒活性。然而,在免疫过程中,接种疫苗的恒河猴群体的CD8 + T细胞抗病毒活性增加,而对照恒河猴保持稳定。感染性SIV暴露也增加了抗病毒活性。接种疫苗的恒河猴在攻击前的抗病毒活性水平不足以预防SIV传播或控制急性感染期间的病毒复制。然而,与对照相比,接种疫苗的动物在攻击后病毒载量持续降低。此外,在攻击后8周(此时建立了病毒血症设定点)的高抑制活性与病毒载量降低和疾病进展缓慢显著相关。攻击前的抗病毒活性影响了这一结果,因为在攻击前后均具有高抑制活性的恒河猴中,病毒血症降低和进展缓慢的状态更为明显。我们的数据证明了CD8 +抗病毒活性对病毒复制和疾病进展的影响,并表明能够引发高水平这种活性的疫苗设计将对保护效果有显著贡献。