Zhang J, Barak L S, Anborgh P H, Laporte S A, Caron M G, Ferguson S S
Howard Hughes Medical Institute Laboratories, Departments of Cell Biology and Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
J Biol Chem. 1999 Apr 16;274(16):10999-1006. doi: 10.1074/jbc.274.16.10999.
beta-Arrestins are multifunctional proteins identified on the basis of their ability to bind and uncouple G protein-coupled receptors (GPCR) from heterotrimeric G proteins. In addition, beta-arrestins play a central role in mediating GPCR endocytosis, a key regulatory step in receptor resensitization. In this study, we visualize the intracellular trafficking of beta-arrestin2 in response to activation of several distinct GPCRs including the beta2-adrenergic receptor (beta2AR), angiotensin II type 1A receptor (AT1AR), dopamine D1A receptor (D1AR), endothelin type A receptor (ETAR), and neurotensin receptor (NTR). Our results reveal that in response to beta2AR activation, beta-arrestin2 translocation to the plasma membrane shares the same pharmacological profile as described for receptor activation and sequestration, consistent with a role for beta-arrestin as the agonist-driven switch initiating receptor endocytosis. Whereas redistributed beta-arrestins are confined to the periphery of cells and do not traffic along with activated beta2AR, D1AR, and ETAR in endocytic vesicles, activation of AT1AR and NTR triggers a clear time-dependent redistribution of beta-arrestins to intracellular vesicular compartments where they colocalize with internalized receptors. Activation of a chimeric AT1AR with the beta2AR carboxyl-terminal tail results in a beta-arrestin membrane localization pattern similar to that observed in response to beta2AR activation. In contrast, the corresponding chimeric beta2AR with the AT1AR carboxyl-terminal tail gains the ability to translocate beta-arrestin to intracellular vesicles. These results demonstrate that the cellular trafficking of beta-arrestin proteins is differentially regulated by the activation of distinct GPCRs. Furthermore, they suggest that the carboxyl-tail of the receptors might be involved in determining the stability of receptor/betaarrestin complexes and cellular distribution of beta-arrestins.
β - 抑制蛋白是一类多功能蛋白质,其鉴定基于它们与异源三聚体G蛋白结合并使G蛋白偶联受体(GPCR)解偶联的能力。此外,β - 抑制蛋白在介导GPCR内吞作用中起核心作用,这是受体再敏化过程中的关键调节步骤。在本研究中,我们观察了β - 抑制蛋白2在几种不同GPCR激活后的细胞内运输情况,这些GPCR包括β2 - 肾上腺素能受体(β2AR)、血管紧张素II 1A型受体(AT1AR)、多巴胺D1A受体(D1AR)、内皮素A型受体(ETAR)和神经降压素受体(NTR)。我们的结果显示,响应β2AR激活时,β - 抑制蛋白2向质膜的转位与受体激活和隔离所描述的药理学特征相同,这与β - 抑制蛋白作为激动剂驱动的开关启动受体内吞作用的作用一致。虽然重新分布的β - 抑制蛋白局限于细胞周边,并不与激活的β2AR、D1AR和ETAR一起在内吞小泡中运输,但AT1AR和NTR的激活会引发β - 抑制蛋白明显的时间依赖性重新分布至细胞内小泡区室,在那里它们与内化的受体共定位。用β2AR羧基末端尾巴构建的嵌合AT1AR的激活导致β - 抑制蛋白的膜定位模式类似于响应β2AR激活时观察到的模式。相反,用AT1AR羧基末端尾巴构建的相应嵌合β2AR获得了将β - 抑制蛋白转运至细胞内小泡的能力。这些结果表明,β - 抑制蛋白的细胞运输受不同GPCR激活的差异调节。此外,它们表明受体的羧基末端尾巴可能参与决定受体/β - 抑制蛋白复合物的稳定性以及β - 抑制蛋白的细胞分布。