Esser M T, Mori T, Mondor I, Sattentau Q J, Dey B, Berger E A, Boyd M R, Lifson J D
Retroviral Pathogenesis Laboratory, AIDS Vaccine Program, SAIC-Frederick, Frederick, Maryland 21702, USA.
J Virol. 1999 May;73(5):4360-71. doi: 10.1128/JVI.73.5.4360-4371.1999.
Cyanovirin-N (CV-N), an 11-kDa protein isolated from the cyanobacterium Nostoc ellipsosporum, potently inactivates diverse strains of human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus. While it has been well established that the viral surface envelope glycoprotein gp120 is a molecular target of CV-N, the detailed mechanism of action is of further interest. We compared matched native and CV-N-treated virus preparations in a panel of assays that measure viral replication, assessing successive stages of the viral life cycle. CV-N-treated virions failed to infect cells as detected by p24 production and quantitative PCR for HIV-1 reverse transcription products, whereas treatment of the target cells did not block infection, confirming that CV-N acts at the level of the virus, not the target cell, to abort the initial infection process. Compared to native HIV-1 preparations, CV-N-treated HIV-1 virions showed impaired CD4-dependent binding to CD4(+) T cells and did not mediate "fusion from without" of CD4(+) target cells. CV-N also blocked HIV envelope glycoprotein Env-induced, CD4-dependent cell-cell fusion. Mapping studies with monoclonal antibodies (MAbs) to defined epitopes on the HIV-1 envelope glycoprotein indicated that CV-N binds to gp120 in a manner that does not occlude or alter the CD4 binding site or V3 loop or other domains on gp120 recognized by defined MAbs and does not interfere with soluble CD4-induced conformational changes in gp120. Binding of CV-N to soluble gp120 or virions inhibited subsequent binding of the unique neutralizing MAb 2G12, which recognizes a glycosylation-dependent epitope. However, prior binding of 2G12 MAb to gp120 did not block subsequent binding by CV-N. These results help clarify the mechanism of action of CV-N and suggest that the compound may act in part by preventing essential interactions between the envelope glycoprotein and target cell receptors. This proposed mechanism is consistent with the extensive activity profile of CV-N against numerous isolates of HIV-1 and other lentiviruses and supports the potential broad utility of this protein as a microbicide to prevent the sexual transmission of HIV.
蓝藻素-N(CV-N)是一种从椭圆念珠藻中分离出的11千道尔顿蛋白质,它能有效灭活多种1型人类免疫缺陷病毒(HIV-1)、HIV-2和猴免疫缺陷病毒毒株。虽然病毒表面包膜糖蛋白gp120是CV-N的分子靶点这一点已得到充分证实,但详细的作用机制仍备受关注。我们在一组测量病毒复制的试验中比较了匹配的天然病毒制剂和经CV-N处理的病毒制剂,评估病毒生命周期的连续阶段。通过p24产生以及针对HIV-1逆转录产物的定量PCR检测发现,经CV-N处理的病毒粒子无法感染细胞,而对靶细胞的处理并未阻断感染,这证实了CV-N在病毒层面而非靶细胞层面发挥作用,从而中止初始感染过程。与天然HIV-1制剂相比,经CV-N处理的HIV-1病毒粒子与CD4(+) T细胞的CD4依赖性结合受损,且无法介导CD4(+)靶细胞的“非融合性融合”。CV-N还阻断了HIV包膜糖蛋白Env诱导的、CD4依赖性的细胞间融合。用针对HIV-1包膜糖蛋白上特定表位的单克隆抗体(MAb)进行的定位研究表明,CV-N以一种不封闭或改变CD4结合位点、V3环或gp120上被特定MAb识别的其他结构域的方式与gp120结合,并且不干扰可溶性CD4诱导的gp120构象变化。CV-N与可溶性gp120或病毒粒子的结合抑制了独特的中和单克隆抗体2G12的后续结合,2G12识别一个糖基化依赖性表位。然而,2G12单克隆抗体先与gp120结合并不阻断随后CV-N的结合。这些结果有助于阐明CV-N的作用机制,并表明该化合物可能部分通过阻止包膜糖蛋白与靶细胞受体之间的关键相互作用来发挥作用。这一提出的机制与CV-N对众多HIV-1分离株和其他慢病毒的广泛活性谱一致,并支持了这种蛋白质作为预防HIV性传播的杀菌剂的潜在广泛用途。