Stenflo J
Department of Clinical Chemistry, University of Lund, University Hospital, Malmö, Sweden.
Crit Rev Eukaryot Gene Expr. 1999;9(1):59-88.
Blood coagulation is a response to vascular injury leading to the activation of platelets and coagulation factors with the ultimate formation of a fibrin plug. Several coagulation factors are zymogens of serine proteases that require vitamin K for normal biosynthesis. The active forms of these proteases and their cofactors form membrane-bound macromolecular complexes. In the final step prothrombin is activated to thrombin by active factor X in complex with its cofactor, factor V. Thrombin then cleaves designated peptide bonds in fibrinogen, resulting in the formation of fibrin monomers that polymerize to insoluble fibrin strands. This process is regulated by an anticoagulant counterpart, the so-called protein C anticoagulant system. Balance between the two systems is crucial to avoid bleeding on the one hand and thrombosis on the other. The coagulation and anticoagulation proteases, factors VII, IX, and X, and protein C, have a common domain structure with an N-terminal gamma-carboxyglutamic acid (Gla)-containing domain that is followed by two domains that are homologous to the epidermal growth factor (EGF), whereas the C-terminal half of each protein is occupied by a trypsin-like serine protease domain. Prothrombin also has an N-terminal Gla domain and a C-terminal serine protease domain, but they are separated by two so-called kringle domains rather than EGF-like domains. Finally, the vitamin K-dependent cofactor protein S has one domain with thrombin-sensitive bonds and four EGF-like domains in tandem between the Gla domain and a C-terminal domain that is homologous to plasma steroid hormone-binding proteins. The N-terminal noncatalytic Gla and EGF-like domains that provide the coagulation serine proteases with unique properties, such as affinity for certain biological membranes, and also mediate protein-protein interactions, are the subject of this review.
血液凝固是对血管损伤的一种反应,导致血小板和凝血因子被激活,最终形成纤维蛋白凝块。几种凝血因子是丝氨酸蛋白酶的酶原,其正常生物合成需要维生素K。这些蛋白酶及其辅因子的活性形式形成膜结合的大分子复合物。在最后一步,凝血酶原在与辅因子因子V形成复合物的活性因子X作用下被激活为凝血酶。然后凝血酶切割纤维蛋白原中特定的肽键,导致形成纤维蛋白单体,这些单体聚合成不溶性的纤维蛋白链。这个过程由一个抗凝对应物,即所谓的蛋白C抗凝系统调节。这两个系统之间的平衡对于一方面避免出血和另一方面避免血栓形成至关重要。凝血和抗凝蛋白酶、因子VII、IX和X以及蛋白C具有共同的结构域结构,其N端含有γ-羧基谷氨酸(Gla)的结构域,后面跟着两个与表皮生长因子(EGF)同源的结构域,而每种蛋白质的C端一半被一个胰蛋白酶样丝氨酸蛋白酶结构域占据。凝血酶原也有一个N端Gla结构域和一个C端丝氨酸蛋白酶结构域,但它们被两个所谓的kringle结构域而不是EGF样结构域隔开。最后,维生素K依赖的辅因子蛋白S有一个带有凝血酶敏感键的结构域和四个串联的EGF样结构域,位于Gla结构域和一个与血浆类固醇激素结合蛋白同源的C端结构域之间。N端非催化性的Gla和EGF样结构域赋予凝血丝氨酸蛋白酶独特的特性,如对某些生物膜的亲和力,还介导蛋白质-蛋白质相互作用,是本综述的主题。