Mathooko F M, Mwaniki M W, Nakatsuka A, Shiomi S, Kubo Y, Inaba A, Nakamura R
Laboratory of Postharvest Agriculture, Faculty of Agriculture, Okayama University, Japan.
Plant Cell Physiol. 1999 Feb;40(2):164-72. doi: 10.1093/oxfordjournals.pcp.a029524.
We investigated the expression pattern of three 1-aminocyclopropane-1-carboxylate (ACC) synthase genes, CS-ACS1, CS-ACS2 and CS-ACS3 in cucumber (Cucumis sativus L.) fruit under CO2 stress. CO2 stress-induced ethylene production paralleled the accumulation of only CS-ACS1 transcripts which disappeared upon withdrawal of CO2. Cycloheximide inhibited the CO2 stress-induced ethylene production but superinduced the accumulation of CS-ACS1 transcript. At higher concentrations, cycloheximide also induced the accumulation of CS-ACS2 and CS-ACS3 transcripts. In the presence of CO2 and cycloheximide, the accumulation of CS-ACS2 transcript occurred within 1 h, disappeared after 3 h and increased greatly upon withdrawal of CO2. Inhibitors of protein kinase and types 1 and 2A protein phosphatases which inhibited and stimulated, respectively, CO2 stress-induced ethylene production had little effect on the expression of these genes. The results presented here identify CS-ACS1 as the main ACC synthase gene responsible for the increased ethylene biosynthesis in cucumber fruit under CO2 stress and suggest that this gene is a primary response gene and its expression is under negative control since it is expressed by treatment with cycloheximide. The results further suggest that the regulation of CO2 stress-induced ethylene biosynthesis by reversible protein phosphorylation does not result from enhanced ACC synthase transcription.
我们研究了三种1-氨基环丙烷-1-羧酸(ACC)合成酶基因,即CS-ACS1、CS-ACS2和CS-ACS3在二氧化碳胁迫下黄瓜(Cucumis sativus L.)果实中的表达模式。二氧化碳胁迫诱导的乙烯生成与仅CS-ACS1转录本的积累平行,在去除二氧化碳后该转录本消失。放线菌酮抑制了二氧化碳胁迫诱导的乙烯生成,但超诱导了CS-ACS1转录本的积累。在较高浓度下,放线菌酮还诱导了CS-ACS2和CS-ACS3转录本的积累。在有二氧化碳和放线菌酮存在的情况下,CS-ACS2转录本的积累在1小时内出现,3小时后消失,并在去除二氧化碳后大幅增加。分别抑制和刺激二氧化碳胁迫诱导的乙烯生成的蛋白激酶抑制剂以及1型和2A型蛋白磷酸酶抑制剂对这些基因的表达影响很小。此处呈现的结果确定CS-ACS1是负责二氧化碳胁迫下黄瓜果实中乙烯生物合成增加的主要ACC合成酶基因,并表明该基因是一个初级反应基因,其表达处于负调控之下,因为它可通过放线菌酮处理来表达。结果进一步表明,可逆蛋白磷酸化对二氧化碳胁迫诱导的乙烯生物合成的调控并非源于ACC合成酶转录的增强。