Rahman M A, Ashton A C, Meunier F A, Davletov B A, Dolly J O, Ushkaryov Y A
Biochemistry Department, Imperial College, London, UK.
Philos Trans R Soc Lond B Biol Sci. 1999 Feb 28;354(1381):379-86. doi: 10.1098/rstb.1999.0390.
alpha-latrotoxin (LTX) stimulates massive release of neurotransmitters by binding to a heptahelical transmembrane protein, latrophilin. Our experiments demonstrate that latrophilin is a G-protein-coupled receptor that specifically associates with heterotrimeric G proteins. The latrophilin-G protein complex is very stable in the presence of GDP but dissociates when incubated with GTP, suggesting a functional interaction. As revealed by immunostaining, latrophilin interacts with G alpha q/11 and G alpha o but not with G alpha s, G alpha i or G alpha z, indicating that this receptor may couple to several G proteins but it is not promiscuous. The mechanisms underlying LTX-evoked norepinephrine secretion from rat brain nerve terminals were also studied. In the presence of extracellular Ca2+, LTX triggers vesicular exocytosis because botulinum neurotoxins E, Cl or tetanus toxin inhibit the Ca(2+)-dependent component of the toxin-evoked release. Based on (i) the known involvement of G alpha q in the regulation of inositol-1,4,5-triphosphate generation and (ii) the requirement for Ca2+ in LTX action, we tested the effect of inhibitors of Ca2+ mobilization on the toxin-evoked norepinephrine release. It was found that aminosteroid U73122, which inhibits the coupling of G proteins to phospholipase C, blocks the Ca(2+)-dependent toxin's action. Thapsigargin, which depletes intracellular Ca2+ stores, also potently decreases the effect of LTX in the presence of extracellular Ca2+. On the other hand, clostridial neurotoxins or drugs interfering with Ca2+ metabolism do not inhibit the Ca2(+)-independent component of LTX-stimulated release. In the absence of Ca2+, the toxin induces in the presynaptic membrane non-selective pores permeable to small fluorescent dyes; these pores may allow efflux of neurotransmitters from the cytoplasm. Our results suggest that LTX stimulates norepinephrine exocytosis only in the presence of external Ca2+ provided intracellular Ca2+ stores are unperturbed and that latrophilin, G proteins and phospholipase C may mediate the mobilization of stored Ca2+, which then triggers secretion.
α-拉毒素(LTX)通过与一种七螺旋跨膜蛋白——促离子型受体(latrophilin)结合,刺激神经递质大量释放。我们的实验表明,促离子型受体是一种与异源三聚体G蛋白特异性结合的G蛋白偶联受体。在GDP存在的情况下,促离子型受体-G蛋白复合物非常稳定,但与GTP一起孵育时会解离,这表明存在功能相互作用。免疫染色显示,促离子型受体与Gαq/11和Gαo相互作用,但不与Gαs、Gαi或Gαz相互作用,这表明该受体可能与多种G蛋白偶联,但并非杂乱无章。我们还研究了LTX诱发大鼠脑神经末梢去甲肾上腺素分泌的潜在机制。在细胞外Ca2+存在的情况下,LTX触发囊泡胞吐作用,因为肉毒杆菌神经毒素E、Cl或破伤风毒素会抑制毒素诱发释放的Ca(2+)依赖性成分。基于(i)已知Gαq参与肌醇-1,4,5-三磷酸生成的调节,以及(ii)LTX作用中对Ca2+的需求,我们测试了Ca2+动员抑制剂对毒素诱发的去甲肾上腺素释放的影响。发现抑制G蛋白与磷脂酶C偶联的甾体U73122可阻断Ca(2+)依赖性毒素的作用。耗尽细胞内Ca2+储存的毒胡萝卜素在细胞外Ca2+存在的情况下也能有效降低LTX的作用。另一方面,梭菌神经毒素或干扰Ca2+代谢的药物不会抑制LTX刺激释放的Ca2(+)非依赖性成分。在没有Ca2+的情况下,毒素会在突触前膜诱导对小荧光染料通透的非选择性孔道;这些孔道可能允许神经递质从细胞质中流出。我们的结果表明,只有在细胞内Ca2+储存未受干扰且存在外部Ca2+的情况下,LTX才会刺激去甲肾上腺素胞吐作用,并且促离子型受体、G蛋白和磷脂酶C可能介导储存Ca2+的动员,进而触发分泌。