Suppr超能文献

8-羟基鸟嘌呤的碱基切除修复可保护DNA免受内源性氧化应激的损伤。

Base excision repair of 8-hydroxyguanine protects DNA from endogenous oxidative stress.

作者信息

Boiteux S, Radicella J P

机构信息

CEA, DSV, Département de Radiobiologie et Radiopathologie, UMR217 CNRS-CEA Radiobiologie Moléculaire et Cellulaire, Fontenay-aux-Roses, France.

出版信息

Biochimie. 1999 Jan-Feb;81(1-2):59-67. doi: 10.1016/s0300-9084(99)80039-x.

Abstract

A particularly important stress for all cells is the one produced by reactive oxygen species (ROS) that are formed as a byproduct of endogenous metabolism or the exposure to environmental oxidizing agents. An oxidatively damaged guanine, 8-hydroxyguanine (8-OH-G), is abundantly produced in DNA exposed to ROS. The biological relevance of this kind of DNA damage has been unveiled by the study of two mutator genes in E. coli, fpg and mutY. Both genes code for DNA glycosylases that cooperate to prevent the mutagenic effects of 8-OH-G. Inactivation of any of those two genes leads to a spontaneous mutator phenotype characterized by the exclusive increase in G:C to T:A transversions. In the simple eukaryote Saccharomyces cerevisiae, the OGG1 gene encodes an 8-OH-G DNA glycosylase which is the functional homolog of the bacterial fpg gene product. Moreover, the inactivation of OGG1 in yeast creates a mutator phenotype that is also specific for the generation of G:C to T:A transversions. The presence of such system in mammals has been confirmed by the cloning of the OGG1 gene coding for a human homolog of the yeast enzyme. Human cells also possess a MutY homolog encoded by the MYH gene. Analysis of the human OGG1 gene and its transcripts in normal and tumoral tissues reveals alternative splicing, polymorphisms and somatic mutations. The aim of this review is to summarize recent findings dealing with the biochemical properties and the biological functions of 8-OH-G DNA glycosylases in bacterial, yeast, insect and mammalian cells. These results point to 8-OH-G as an endogenous source of mutations and to its likely involvement in the process of carcinogenesis.

摘要

对所有细胞而言,一种特别重要的压力是由活性氧(ROS)产生的,活性氧是内源性代谢的副产物或暴露于环境氧化剂时形成的。在暴露于ROS的DNA中会大量产生氧化损伤的鸟嘌呤,即8-羟基鸟嘌呤(8-OH-G)。通过对大肠杆菌中两个诱变基因fpg和mutY的研究,揭示了这种DNA损伤的生物学相关性。这两个基因都编码DNA糖基化酶,它们共同作用以防止8-OH-G的诱变作用。这两个基因中任何一个的失活都会导致自发诱变表型,其特征是G:C到T:A颠换的独家增加。在简单的真核生物酿酒酵母中,OGG1基因编码一种8-OH-G DNA糖基化酶,它是细菌fpg基因产物的功能同源物。此外,酵母中OGG1的失活会产生一种诱变表型,该表型也特异性地导致G:C到T:A颠换的产生。通过克隆编码酵母酶人类同源物的OGG1基因,证实了哺乳动物中存在这种系统。人类细胞还拥有由MYH基因编码的MutY同源物。对正常组织和肿瘤组织中人类OGG1基因及其转录本的分析揭示了可变剪接、多态性和体细胞突变。本综述的目的是总结最近关于细菌、酵母、昆虫和哺乳动物细胞中8-OH-G DNA糖基化酶的生化特性和生物学功能的研究结果。这些结果表明8-OH-G是内源性突变源,并可能参与致癌过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验