Hu L A, King S C
Department of Physiology and Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0641, USA.
Biochem J. 1999 May 1;339 ( Pt 3)(Pt 3):649-55. doi: 10.1042/bj3390649.
The Escherichia coli gamma-aminobutyric acid transporter GabP (gab permease) contains a functionally significant cysteine residue (Cys-300) within its consensus amphipathic region (CAR), a putative channel-forming structure that extends out of transmembrane helix 8 and into the adjoining cytoplasmic loop 8-9 of transporters from the amine-polyamine-choline (APC) superfamily. Here we show that of the five cysteine residues (positions 158, 251, 291, 300 and 443) in the E. coli GabP, Cys-300 is the one that renders the transport activity sensitive to inhibition by thiol modification reagents: whereas substituting Ala for Cys-300 mimics the inhibitory effect of thiol modification, substituting Ala at position 158, 251, 291 or 443 preserves robust transport activity and confers no resistance to thiol inactivation; and whereas the robustly active Cys-300 single-Cys mutant is fully sensitive to thiol modification, other single-Cys mutants (Cys at 158, 251, 291 or 443) exhibit kinetically compromised transport activities that resist further chemical inactivation by thiol reagents. The present study reveals additionally that Cys-300 exhibits (1) sensitivity to hydrophobic thiol reagents, (2) general resistance to bulky (fluorescein 5-maleimide) and/or charged {2-sulphonatoethyl methanethiosulphonate or [2-(trimethylammonium)ethyl] methanethiosulphonate} thiol reagents and (3) a peculiar sensitivity to p-chloromercuribenzenesulphonate (PCMBS). The accessibility of PCMBS to Cys-300 (located midway through the lipid bilayer) might be related to the structural similarity that it shares with guvacine (1, 2,3,6-tetrahydro-3-pyridinecarboxylic acid), a transported GabP substrate. These structural requirements for thiol sensitivity provide the first chemical evidence consistent with channel-like access to the polar surface of the CAR, a physical configuration that might provide a basis for understanding how this region impacts the function of APC transporters generally [Closs, Lyons, Kelly and Cunningham (1993) J. Biol. Chem. 268, 20796-20800] and the gab permease particularly [Hu and King (1998) Biochem. J. 300, 771-776].
大肠杆菌γ-氨基丁酸转运蛋白GabP(gab通透酶)在其共有两亲区域(CAR)内含有一个功能上重要的半胱氨酸残基(Cys-300),CAR是一种假定的通道形成结构,它从跨膜螺旋8延伸出来并进入胺-多胺-胆碱(APC)超家族转运蛋白相邻的胞质环8-9。在此我们表明,在大肠杆菌GabP的五个半胱氨酸残基(位置158、251、291、300和443)中,Cys-300是使转运活性对硫醇修饰试剂的抑制敏感的那个残基:用丙氨酸替代Cys-300模拟了硫醇修饰的抑制作用,而在位置158、251、291或443处用丙氨酸替代则保留了强大的转运活性且不赋予对硫醇失活的抗性;并且虽然具有强大活性的Cys-300单半胱氨酸突变体对硫醇修饰完全敏感,但其他单半胱氨酸突变体(位于158、251、291或443处的半胱氨酸)表现出动力学受损的转运活性,可抵抗硫醇试剂的进一步化学失活。本研究还揭示Cys-300表现出(1)对疏水硫醇试剂敏感,(2)对大分子(5-马来酰亚胺荧光素)和/或带电荷的{2-磺基乙基甲硫基磺酸盐或[2-(三甲基铵)乙基]甲硫基磺酸盐}硫醇试剂普遍具有抗性,以及(3)对对氯汞苯磺酸盐(PCMBS)具有特殊敏感性。PCMBS对位于脂质双层中间位置的Cys-300的可及性可能与其与转运的GabP底物胍丁胺(1,2,3,6-四氢-3-吡啶羧酸)的结构相似性有关。这些硫醇敏感性的结构要求提供了首个与对CAR极性表面的通道样可及性一致的化学证据,这种物理构型可能为理解该区域如何普遍影响APC转运蛋白的功能[克洛斯、莱昂斯、凯利和坎宁安(1993年)《生物化学杂志》268, 20796 - 20800],特别是gab通透酶的功能[胡和金(1998年)《生物化学杂志》300, 771 - 776]提供基础。