Suppr超能文献

院内心肺复苏:心脏骤停前的发病率和预后

In-hospital cardiopulmonary resuscitation: prearrest morbidity and outcome.

作者信息

de Vos R, Koster R W, De Haan R J, Oosting H, van der Wouw P A, Lampe-Schoenmaeckers A J

机构信息

Resuscitation Committee, Academic Medical Center, University of Amsterdam, The Netherlands.

出版信息

Arch Intern Med. 1999 Apr 26;159(8):845-50. doi: 10.1001/archinte.159.8.845.

Abstract

BACKGROUND

Considerations about the application of cardiopulmonary resuscitation (CPR) should include the expected probability of survival. The survival probability after CPR may be more accurately estimated by the occurrence in time of the prearrest morbidity of patients.

OBJECTIVE

To identify risk factors for poor survival after CPR in relation to the dynamics of prearrest morbidity.

METHODS

Medical records of CPR patients were reviewed. Prearrest morbidity was established by categorizing the medical diagnoses according to 3 functional time frames: before hospital admission, on hospital admission, and during hospital admission. Indicators of poor survival after CPR were identified through a logistic regression model.

RESULTS

Included in the study were 553 CPR patients with a median age of 68 years (age range, 18-98 years); 21.7% survived to hospital discharge. Independent indicators of poor outcome were an age of 70 years or older (odds ratio [OR]=0.6, 95% confidence interval [CI]=0.4-0.9), stroke (OR=0.3, 95% CI=0.1-0.7) or renal failure (OR=0.3, 95% CI=0.1-0.8) before hospital admission, and congestive heart failure during hospital admission (OR=0.4, 95% CI=0.2-0.9). Indicators of good survival were angina pectoris before hospital admission (OR=2.1, 95% CI=1.3-.3.3) or ventricular dysrhythmia as the diagnosis on hospital admission (OR=11.0, 95% CI=4.1-33.7). Based on a logistic regression model, 17.4% of our CPR patients (n= 96) were identified as having a high risk for a poor outcome (< 10% survival).

CONCLUSIONS

Time of prearrest morbidity has a prognostic value for survival after CPR. Patients at risk for poor survival can be identified on or during hospital admission, but the reliability and validity of the model needs further research. Although decisions will not be made by the model, its information can be useful for physicians in discussions about patient prognoses and to make decisions about CPR with more confidence.

摘要

背景

关于心肺复苏(CPR)应用的考量应包括预期生存概率。通过患者心脏骤停前发病情况的时间发生情况,可能能更准确地估计心肺复苏后的生存概率。

目的

确定与心脏骤停前发病动态相关的心肺复苏后生存不良的危险因素。

方法

回顾了心肺复苏患者的病历。根据3个功能时间框架对医学诊断进行分类来确定心脏骤停前的发病情况:入院前、入院时和住院期间。通过逻辑回归模型确定心肺复苏后生存不良的指标。

结果

该研究纳入了553例心肺复苏患者,中位年龄为68岁(年龄范围18 - 98岁);21.7%存活至出院。不良结局的独立指标为年龄70岁及以上(比值比[OR]=0.6,95%置信区间[CI]=0.4 - 0.9)、入院前中风(OR=0.3,95% CI=0.1 - 0.7)或肾衰竭(OR=0.3,95% CI=0.1 - 0.8),以及住院期间充血性心力衰竭(OR=0.4,95% CI=0.2 - 0.9)。良好生存的指标为入院前心绞痛(OR=2.1,95% CI=1.3 - 3.3)或入院诊断为室性心律失常(OR=11.0,95% CI=4.1 - 33.7)。基于逻辑回归模型,我们的心肺复苏患者中有17.4%(n = 96)被确定为预后不良风险高(生存概率<10%)。

结论

心脏骤停前发病时间对心肺复苏后的生存具有预后价值。在入院时或住院期间可以识别出生存不良风险的患者,但该模型的可靠性和有效性需要进一步研究。虽然不会由该模型做出决策,但其信息对医生在讨论患者预后以及更有信心地做出心肺复苏决策时可能有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验