Suppr超能文献

Cytotoxic and genotoxic potential of dopamine.

作者信息

Stokes A H, Hastings T G, Vrana K E

机构信息

Center for the Neurobiological Investigation of Drug Abuse, Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1083, USA.

出版信息

J Neurosci Res. 1999 Mar 15;55(6):659-65. doi: 10.1002/(SICI)1097-4547(19990315)55:6<659::AID-JNR1>3.0.CO;2-C.

Abstract

A variety of in vitro and in vivo studies demonstrate that dopamine is a toxic molecule that may contribute to neurodegenerative disorders such as Parkinson's disease and ischemia-induced striatal damage. While much attention has focused on the fact that the metabolism of dopamine produces reactive oxygen species (peroxide, superoxide, and hydroxyl radical), growing evidence suggests that the neurotransmitter itself may play a direct role in the neurodegenerative process. Oxidation of the dopamine molecule produces a reactive quinone moiety that is capable of covalently modifying and damaging cellular macromolecules. This quinone formation occurs spontaneously, can be accelerated by metal ions (manganese or iron), and also arises from selected enzyme-catalyzed reactions. Macromolecular damage, combined with increased oxidant stress, may trigger cellular responses that eventually lead to cell death. Reactive quinones have long been known to represent environmental toxicants and, within the context of dopamine metabolism, may also play a role in pathological processes associated with neurodegeneration. The present discussion will review the oxidative metabolism of dopamine and describe experimental evidence suggesting that dopamine quinone may contribute to the cytotoxic and genotoxic potential of this essential neurotransmitter.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验