Varré J S, Delahaye J P, Rivals E
Laboratoire d'Informatique Fondamentale de Lille (LIFL), UFR IEEA - Bât M3, 59655 Villeneuve d'Ascq Cedex, France.
Bioinformatics. 1999 Mar;15(3):194-202. doi: 10.1093/bioinformatics/15.3.194.
Evolution acts in several ways on DNA: either by mutating a base, or by inserting, deleting or copying a segment of the sequence (Ruddle, 1997; Russell, 1994; Li and Grauer, 1991). Classical alignment methods deal with point mutations (Waterman, 1995), genome-level mutations are studied using genome rearrangement distances (Bafna and Pevzner, 1993, 1995; Kececioglu and Sankoff, 1994; Kececioglu and Ravi, 1995). The latter distances generally operate, not on the sequences, but on an ordered list of genes. To our knowledge, no measure of distance attempts to compare sequences using a general set of segment-based operations.
Here we define a new family of distances, called transformation distances, which quantify the dissimilarity between two sequences in terms of segment-based events. We focus on the case where segment-copy, -reverse-copy and -insertion are allowed in our set of operations. Those events are weighted by their description length, but other sets of weights are possible when biological information is available. The transformation distance from sequence S to sequence T is then the Minimum Description Length among all possible scripts that build T knowing S with segment-based operations. The underlying idea is related to Kolmogorov complexity theory. We present an algorithm which, given two sequences S and T, computes exactly and efficiently the transformation distance from S to T. Unlike alignment methods, the method we propose does not necessarily respect the order of the residues within the compared sequences and is therefore able to account for duplications and translocations that cannot be properly described by sequence alignment. A biological application on Tnt1 tobacco retrotransposon is presented.
The algorithm and the graphical interface can be downloaded at http://www.lifl.fr/ approximately varre/TD
进化通过多种方式作用于DNA:要么使碱基发生突变,要么通过插入、删除或复制一段序列(拉德尔,1997年;拉塞尔,1994年;李和格劳尔,1991年)。传统的比对方法处理点突变(沃特曼,1995年),而基因组水平的突变则使用基因组重排距离进行研究(巴夫纳和佩夫兹纳,1993年、1995年;凯塞乔格鲁和桑科夫,1994年;凯塞乔格鲁和拉维,1995年)。后者的距离通常不是作用于序列本身,而是作用于基因的有序列表。据我们所知,没有一种距离度量试图使用基于片段的一般操作集来比较序列。
在此,我们定义了一个新的距离家族,称为变换距离,它根据基于片段的事件来量化两个序列之间的差异。我们关注的情况是,在我们的操作集中允许片段复制、反向复制和插入。这些事件通过它们的描述长度进行加权,但当有生物学信息可用时,也可以使用其他权重集。从序列S到序列T的变换距离就是在所有可能的脚本中,使用基于片段的操作从S构建T时的最小描述长度。其基本思想与柯尔莫哥洛夫复杂性理论相关。我们提出了一种算法,给定两个序列S和T,能够准确且高效地计算从S到T的变换距离。与比对方法不同,我们提出的方法不一定遵循所比较序列中残基的顺序,因此能够处理序列比对无法恰当描述的重复和易位情况。本文展示了对Tnt1烟草反转录转座子的生物学应用。
该算法和图形界面可从http://www.lifl.fr/ approximately varre/TD下载。