Suppr超能文献

一种用于测定水中微生物可利用磷的新型灵敏生物测定法。

A new sensitive bioassay for determination of microbially available phosphorus in water.

作者信息

Lehtola MJ, Miettinen IT, Vartiainen T, Martikainen PJ

机构信息

Laboratory of Environmental Microbiology, National Public Health Institute, FIN-70701 Kuopio, Finland.

出版信息

Appl Environ Microbiol. 1999 May;65(5):2032-4. doi: 10.1128/AEM.65.5.2032-2034.1999.

Abstract

The content of assimilable organic carbon has been proposed to control the growth of microbes in drinking water. However, recent results have shown that there are regions where it is predominantly phosphorus which determines the extent of microbial growth in drinking waters. Even a very low concentration of phosphorus (below 1 &mgr;g of P liter-1) can promote extensive microbial growth. We present here a new sensitive method to determine microbially available phosphorus concentrations in water down to 0.08 &mgr;g of P liter-1. The method is a bioassay in which the analysis of phosphorus in a water sample is based on maximum growth of Pseudomonas fluorescens P17 when the energy supply and inorganic nutrients, with the exception of phosphorus, do not limit bacterial growth. Maximum growth (CFU) in the water sample is related to the concentration of phosphorus with the factor 373,200 +/- 9,400 CFU/&mgr;g of PO4-P. A linear relationship was found between cell growth and phosphorus concentration between 0.05 to 10 &mgr;g of PO4-P liter-1. The content of microbially available phosphorus in Finnish drinking waters varied from 0.1 to 10.2 &mgr;g of P liter-1 (median, 0.60 &mgr;g of P liter-1).

摘要

有人提出可同化有机碳的含量控制着饮用水中微生物的生长。然而,最近的研究结果表明,在一些地区,主要是磷决定了饮用水中微生物生长的程度。即使是极低浓度的磷(低于1微克/升的磷)也能促进微生物的大量生长。我们在此介绍一种新的灵敏方法,可测定水中微生物可利用磷的浓度,低至0.08微克/升的磷。该方法是一种生物测定法,其中水样中磷的分析基于荧光假单胞菌P17在能量供应和除磷以外的无机营养物不限制细菌生长时的最大生长量。水样中的最大生长量(CFU)与磷浓度的关系系数为373,200±9,400 CFU/微克的PO4-P。在0.05至10微克/升的PO4-P之间,发现细胞生长与磷浓度呈线性关系。芬兰饮用水中微生物可利用磷的含量在0.1至10.2微克/升的磷之间变化(中位数为0.60微克/升的磷)。

相似文献

1
A new sensitive bioassay for determination of microbially available phosphorus in water.
Appl Environ Microbiol. 1999 May;65(5):2032-4. doi: 10.1128/AEM.65.5.2032-2034.1999.
2
Microbially available organic carbon, phosphorus, and microbial growth in ozonated drinking water.
Water Res. 2001 May;35(7):1635-40. doi: 10.1016/s0043-1354(00)00449-8.
4
Biofilm formation in drinking water affected by low concentrations of phosphorus.
Can J Microbiol. 2002 Jun;48(6):494-9. doi: 10.1139/w02-048.
5
Investigation of microbially available phosphorus (MAP) in flemish drinking water.
Water Res. 2005 Jun;39(11):2267-72. doi: 10.1016/j.watres.2005.04.019.
7
Phosphorus and bacterial growth in drinking water.
Appl Environ Microbiol. 1997 Aug;63(8):3242-5. doi: 10.1128/aem.63.8.3242-3245.1997.
9
Phosphorus limitation in nitrifying groundwater filters.
Water Res. 2012 Mar 15;46(4):1061-9. doi: 10.1016/j.watres.2011.11.075. Epub 2011 Dec 8.
10
Evaluation and simplification of the assimilable organic carbon nutrient bioassay for bacterial growth in drinking water.
Appl Environ Microbiol. 1993 May;59(5):1532-9. doi: 10.1128/aem.59.5.1532-1539.1993.

引用本文的文献

1
Enhanced hydraulic cleanability of biofilms developed under a low phosphorus concentration in reverse osmosis membrane systems.
Water Res X. 2020 Dec 14;10:100085. doi: 10.1016/j.wroa.2020.100085. eCollection 2021 Jan 1.
2
Suitability of optical, physical and chemical measurements for detection of changes in bacterial drinking water quality.
Int J Environ Res Public Health. 2013 Oct 25;10(11):5349-63. doi: 10.3390/ijerph10115349.
3
Variations in the physicochemical characteristics of the Buffalo River in the Eastern Cape Province of South Africa.
Environ Monit Assess. 2013 Oct;185(10):8733-47. doi: 10.1007/s10661-013-3208-1. Epub 2013 May 2.
4
Heterotrophic bacteria in drinking water distribution system: a review.
Environ Monit Assess. 2012 Oct;184(10):6087-137. doi: 10.1007/s10661-011-2407-x. Epub 2011 Nov 11.
5
Water quality assessment: surface water sources used for drinking and irrigation in Zaria, Nigeria are a public health hazard.
Environ Monit Assess. 2012 May;184(5):3389-400. doi: 10.1007/s10661-011-2396-9. Epub 2011 Oct 21.
6
Detection of Escherichia coli in biofilms from pipe samples and coupons in drinking water distribution networks.
Appl Environ Microbiol. 2007 Nov;73(22):7456-64. doi: 10.1128/AEM.00845-07. Epub 2007 Aug 24.
8
Effect of Phosphorus on survival of Escherichia coli in drinking water biofilms.
Appl Environ Microbiol. 2007 Jun;73(11):3755-8. doi: 10.1128/AEM.00313-07. Epub 2007 Apr 6.
10
Formation of biofilms in drinking water distribution networks, a case study in two cities in Finland and Latvia.
J Ind Microbiol Biotechnol. 2004 Dec;31(11):489-94. doi: 10.1007/s10295-004-0173-2. Epub 2004 Oct 7.

本文引用的文献

2
Phosphorus and bacterial growth in drinking water.
Appl Environ Microbiol. 1997 Aug;63(8):3242-5. doi: 10.1128/aem.63.8.3242-3245.1997.
3
Contamination of drinking water.
Nature. 1996 Jun 20;381(6584):654-5. doi: 10.1038/381654b0.
4
A new medium for the enumeration and subculture of bacteria from potable water.
Appl Environ Microbiol. 1985 Jan;49(1):1-7. doi: 10.1128/aem.49.1.1-7.1985.
5
High levels of mutagenic activity in chlorinated drinking water in Finland.
Mutat Res. 1986 Jan-Feb;169(1-2):29-34. doi: 10.1016/0165-1218(86)90014-5.
6
Mutagenic by-products from chlorination of humic acid.
Environ Health Perspect. 1986 Nov;69:101-7. doi: 10.1289/ehp.8669101.
7
Bacterial nutrients in drinking water.
Appl Environ Microbiol. 1991 Mar;57(3):857-62. doi: 10.1128/aem.57.3.857-862.1991.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验