Suppr超能文献

Apoptosis-inducing agents cause rapid shedding of tumor necrosis factor receptor 1 (TNFR1). A nonpharmacological explanation for inhibition of TNF-mediated activation.

作者信息

Madge L A, Sierra-Honigmann M R, Pober J S

机构信息

Molecular Cardiobiology Program, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536-0812, USA.

出版信息

J Biol Chem. 1999 May 7;274(19):13643-9. doi: 10.1074/jbc.274.19.13643.

Abstract

Several chemical compounds not known to interact with tumor necrosis factor (TNF) signal transducing proteins inhibit TNF-mediated activation of vascular endothelial cells (EC). Four structurally diverse agents, arachidonyl trifluoromethylketone, staurosporine, sodium salicylate, and C6-ceramide, were studied. All four agents caused EC apoptosis at concentrations that inhibited TNF-induced IkappaBalpha degradation. However, evidence of apoptosis was not evident until after several (e.g. 3-12) hours of treatment, whereas 2 h of treatment was sufficient to inhibit TNF responses. IL-1-induced IkappaBalpha degradation was unaffected by these treatments. Inhibition of TNF signaling could not be prevented with either of the broad spectrum caspase inhibitors zVADfmk or yVADcmk. The inhibition of p38 kinase with SB203580 prevented the inhibition of TNF signaling by all agents except arachidonyl trifluoromethylketone. No changes in the levels or molecular weights of the adaptor proteins TRADD (TNF receptor-associated death domain), RIP (receptor-interacting protein), or TRAF2 (TNF receptor-associated factor-2) were caused by apoptogenic drugs. However, TNF receptor 1 (TNFR1) surface expression was significantly reduced by all four agents. Furthermore, TNF-dependent recruitment of TRADD to surface TNFR1 was also inhibited. These data suggest that several putative inhibitors of TNF signaling work by triggering apoptosis and that an early event coincident with the initiation of apoptosis, preceding evidence of injury, is loss of TNFR1. Consistent with this hypothesis, cotreatment of EC with the metalloproteinase inhibitor Tapi (TNF-alpha proteinase inhibitor) blocked the reduction in surface TNFR1 by apoptogenic drugs and prevented inhibition of TNF-induced IkappaBalpha degradation without blocking apoptosis. TNFR1 loss could be a mechanism to limit inflammation in response to apoptotic cell death.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验